Effects of Biofertilizer Application and Organic Matter Incubation on Soil Chemical Properties

Authors

DOI:

10.29303/jppipa.v11i11.13342

Published:

2025-12-02

Downloads

Abstract

Soil organic matter is essential for maintaining soil fertility and supporting sustainable agricultural production. However, raw organic matter does not directly enhance soil chemical properties without a sufficient decomposition period. This study evaluated the effects of organic matter incubation and biofertilizer concentrations on soil chemical characteristics. The experiment was conducted from June to August 2024 in the Greenhouse Laboratory of Gunadarma Technopark University, Jamali Village, West Java, using a completely randomized factorial design. Treatments consisted of four biofertilizer concentrations (0, 10, 15, and 20 mL/L) and five incubation periods of cow manure (0, 1, 2, 3, and 4 weeks), each replicated four times, resulting in 80 experimental units. The results showed a significant interaction between incubation duration and biofertilizer concentration on soil pH, organic carbon, total nitrogen, C/N ratio, available phosphorus (P₂O₅), and available potassium (K₂O). The four-week incubation combined with 10–20 mL/L of biofertilizer produced the most notable improvements, increasing pH to neutral levels, raising organic carbon and nitrogen contents, achieving an optimal C/N ratio, and enhancing P availability, although K remained low. These findings indicate that combining biofertilizer application with an adequate incubation period effectively improves soil fertility and offers a viable strategy for long-term soil management and agricultural productivity.

Keywords:

Biofertilizer, Incubation period, Organic matter, Soil fertility, Sustainable agriculture

References

Aisyah, K., R., & Sari, E. R. (2018). Lama Inkubasi Pupuk Kandang Kambing Pada Tanah Tercemar Logam Berat’. Jurnal Pertanian Presisi (Journal of Precision Agriculture), 2(1), 21–34. https://doi.org/10.35760/jpp.2018.v2i1.2004

Arfarita, N., Lestari, M. W., & Prayogo, C. (2020). Utilization of vermiwash for the production of liquid biofertilizers and its effect on viability of inoculant bacteria and green bean germination’. Agrivita, 42(1), 120–130. https://doi.org/10.17503/agrivita.v42i1.2263

Chen, M., Zhang, S., Liu, L., Liu, J., & Ding, X. (2022). Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil’. Plant and Soil, 474(1), 233–249. https://doi.org/10.1007/s11104-022-05326-3

Corbett, D. (2022). The influence of phosphorus application and varying soil pH on soil and herbage properties across a range of grassland soils with impeded drainage’. Journal of Agricultural Science, 160(6), 516–527. https://doi.org/10.1017/S0021859622000363

Cui, X., Zhang, Y., Gao, J., Peng, F., & Gao, P. (2018). Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China’. Scientific Reports, 8(1), 16554. https://doi.org/10.1038/s41598-018-34685-0

Da Cunha Leme Filho, J. F., Chim, B. K., Bermand, C., Diatta, A. A., & Thomason, W. E. (2024). Effect of organic biostimulants on cannabis productivity and soil microbial activity under outdoor conditions’. Journal of Cannabis Research, 6(1), 16. https://doi.org/10.1186/s42238-024-00214-2

Daniel, A. I. (2022). Biofertilizer: The Future of Food Security and Food Safety’. Microorganisms. https://doi.org/10.3390/microorganisms10061220

Debska, B. (2016). The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration—results from a field-scale study’. Journal of Soils and Sediments, 16. https://doi.org/10.1007/s11368-016-1430-5

Dikinya, O., & Mufwanzala, N. (2010). Chicken manure-enhanced soil fertility and productivity: Effects of application rates’. Journal of Soil Science and Environmental Management, 1(3), 46–54. Retrieved from https://academicjournals.org/journal/JSSEM/article-full-text-pdf/F47E1839575.pdf

Fitriatin, B. N., Dewi, V. F., & Yuniarti, A. (2021). The Impact of Biofertilizers and NPK Fertilizers Application on Soil Phosphorus Availability and Yield of Upland Rice in Tropic Dry Land’. E3S Web of Conferences, 232. https://doi.org/10.1051/e3sconf/202123203012

Guan, X. (2023). Mixed organic and inorganic amendments enhance soil microbial interactions and environmental stress resistance of Tibetan barley on plateau farmland’. Journal of Environmental Management, 330, 117137. https://doi.org/10.1016/j.jenvman.2022.117137

Guo, Q., Fang, X., Wang, L., Zhang, E., & Liu, Z. (2023). Robust fusion for skin lesion segmentation of dermoscopic images’. Frontiers in Bioengineering and Biotechnology, 11, 1–14. https://doi.org/10.3389/fbioe.2023.1057866

Haibin, W., Zhengtang, G., & Changhui, P. (2001). Changes in Terrestrial Carbon Storage With Global Climate Changes Since The Last Interglacial’. Quaternary Sciences, 21(4), 366–376. Retrieved from http://www.dsjyj.com.cn//article/id/dsjyj_9432

Hamed, M. H., Desoky, M. A., Ghallab, A. M., & Faragallah, M. A. (2014). Effect of Incubation Periods and Some Organic Materials on Phosphorus Forms in Calcareous Soils’. International Journal of Technology Enhancements and Emerging Engineering Research, 2(6), 108. Retrieved from https://www.researchgate.net/publication/322307955

Harsani, H., Zulkifli, Z., & Putera, M. I. (2023). Dinamika Status Hara Lahan Kering Menggunakan Tabung Hara Biochar Bermikoriza’, Agroplantae: Jurnal Ilmiah Terapan Budidaya dan Pengelolaan Tanaman Pertanian dan. Perkebunan, 12(2), 171–180. https://doi.org/10.51978/agro.v12i2.691

He, H., Peng, M., Hou, Z., & Li, J. (2024). Unlike chemical fertilizer reduction, organic fertilizer substitution increases soil organic carbon stock and soil fertility in wheat fields’. Journal of the Science of Food and Agriculture, 104(5), 2798–2808. https://doi.org/10.1002/jsfa.13167

Hossain, M. E. (2021). Substitution of Chemical Fertilizer with Organic Fertilizer Affects Soil Total Nitrogen and Its Fractions in Northern China’. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph182312848

Husni, H., Septiani, W., & Tamzi, F. (2022). Dinamika Simpanan Karbon dan Kepadatan Tanah Setelah Pengolahan Tanah’. Jurnal Agroecotania : Publikasi Nasional Ilmu Budidaya Pertanian, 4(1), 38–48. https://doi.org/10.22437/agroecotania.v4i1.20434

Indriana, K. R., Dirmawan, R. H., & Komariah, A. (2021). Pengaruh Konsentrasi Pupuk Hayati Bioboost dan Air Kelapa Terhadap Pertumbuhan dan Hasil Tanaman Selada (Lactuca sativa L.) Varietas Grand Rapids. Jurnal Agroscience, 11(1), 1–13. Retrieved from https://pdfs.semanticscholar.org/3bdc/a134806d1c1b57260432c3801c3785d98ee6.pdf

Jones, D. L., & Oburger, E. (2010). Solubilization of phosphorus by soil microorganisms. In Phosphorus in action: biological processes in soil phosphorus cycling (pp. 169–198). Springer. https://doi.org/10.1007/978-3-642-15271-9_7

Kaur, A. (2024). Developing a Hybrid Irrigation System for Smart Agriculture Using IoT Sensors and Machine Learning in Sri Ganganagar, Rajasthan’. Journal of Sensors. https://doi.org/10.1155/2024/6676907

Kuziemska, B., Wysokiński, A., & Trębicka, J. (2020). The effect of different copper doses and organic fertilisation on soil’s enzymatic activity. Plant, Soil and Environment, 66(2), 93–98. https://doi.org/10.17221/671/2019-PSE

Li, J., Cooper, J. M., Lin, Z. A., Li, Y., Yang, X., & Zhao, B. (2015). Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain’. Applied Soil Ecology, 96, 75–87. https://doi.org/10.1016/j.apsoil.2015.07.001

Li, X., Fang, J., Shagahaleh, H., Wang, J., Hamad, A. A. A., & Alhaj Hamoud, Y. (2023). Impacts of Partial Substitution of Chemical Fertilizer with Organic Fertilizer on Soil Organic Carbon Composition, Enzyme Activity, and Grain Yield in Wheat–Maize Rotation’. Life, 13(9), 1929. https://doi.org/10.3390/life13091929

Ma, G., Cheng, S., He, W., Dong, Y., Qi, S., Tu, N., & Tao, W. (2023). Effects of Organic and Inorganic Fertilizers on Soil Nutrient Conditions in Rice Fields with Varying Soil Fertility’. Land, 12(5). https://doi.org/10.3390/land12051026

Manoj, S., Thirumurugan, M., & Elango, L. (2020). Determination of distribution coefficient of uranium from physical and chemical properties of soil. Chemosphere, 244, 125411. https://doi.org/10.1016/j.chemosphere.2019.125411

Muktamar, Z., & Lifia, T. A. (2020). Phosphorus availability as affected by the application of organic amendments in Ultisols’. Sains Tanah, 17(1), 16–22. https://doi.org/10.20961/stjssa.v17i1.41284.

Opala, P. A., Okalebo, J. R., & Othieno, C. O. (2012). Effects of Organic and Inorganic Materials on Soil Acidity and Phosphorus Availability in a Soil Incubation Study’. ISRN Agronomy, 1–10. https://doi.org/10.5402/2012/597216

Patriani, P., Hasanah, U., & Wahyuni, T. H. (2022). Bokashi Application for Organic Farming in Manuk Mulia Village, Karo District’. Journal of Saintech Transfer, 5(1), 40–48. https://doi.org/10.32734/jst.v5i1.8851

Qaswar, M., Jing, H., Ahmed, W., Dongchu, L., Shujun, L., Lu, Z., & Huimin, Z. (2020). Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil’. Soil and Tillage Research, 198, 104569. https://doi.org/10.1016/j.still.2019.104569

Salma, D., Venkaiah, K., Naidu, M., & Ramu, Y. (2018). Soil Physical Properties and Groundnut (Arachis hypogae L.) Yield under Long­ Term Application of Manure and Fertilizers under Rainfed Condition’. International Journal of Plant & Soil Science, 22(5), 1–8. https://doi.org/10.9734/ijpss/2018/40859

Sanchez, P. A. (2019). Properties and Management of Soils in the Tropics’. Cambridge University Press.

Saputri, K. E., Idiawati, N. S., & Juane Sofiana, M. S. (2021). Isolasi dan Karakterisasi Bakteri Penambat Nitrogen dari Rizosfer Mangrove di Kuala Singkawang’. Jurnal Laut Khatulistiwa, 4(2), 80. https://doi.org/10.26418/lkuntan.v4i2.45316

Shi, Y., Niu, X., Chen, B., Pu, S., Ma, H., Li, P., & Ma, X. (2023). Chemical fertilizer reduction combined with organic fertilizer affects the soil microbial community and diversity and yield of cotton.’. Frontiers in Microbiology, 14, 1295722. https://doi.org/10.3389/fmicb.2023.1295722

Siregar, P., Fauzi, & Suproadi. (2017). Pengaruh Pemberian Beberapa Sumber Bahan Organik Dan Masa Inkubasi Terhadap Beberapa Aspek Kimia Kesuburan Tanah Ultisol (The Effect of Giving Several Sources of Organic Material and Incubation Period on Some Chemical Aspects of Ultisol Soil Fertility)’. Jurnal Agroekoteknologi Universitas Sumatera Utara, 5(2), 256–264. Retrieved from https://talenta.usu.ac.id/joa/article/view/2541

Tan, K. H. (2010). Principles of Soil Chemistry (4th Editio). Taylor & Francis. https://doi.org/10.1201/9781439894606

Thomas, G. W., & Hipp, B. W. (1968). Soil factors affecting potassium availability. The Role of Potassium in Agriculture, 269–291. https://doi.org/10.2134/1968.roleofpotassium.c13

Tong, Y. (2024). Enhancing Soil Fertility and Elevating Pecan Fruit Quality through Combined Chemical and Organic Fertilization Practices’. Horticulturae. https://doi.org/10.3390/horticulturae10010025

Wan, L. J., Tian, Y., He, M., Zheng, Y. Q., Lyu, Q., Xie, R. J., & Yi, S. L. (2021). Effects of Chemical Fertilizer Combined with Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield’. Agriculture, 11(12), 1207. https://doi.org/10.3390/agriculture11121207

Wang, B., Gao, Y., Yuan, X., Xiong, S., & Feng, X. (2020). From species to cultivar: Soybean cultivar recognition using joint leaf image patterns by multiscale sliding chord matching’. Biosystems Engineering, 194, 99–111. https://doi.org/10.1016/j.biosystemseng.2020.03.019

Wang, R., Hou, T., Sun, Q., Ji, L., Lei, J., & Zhang, J. (2021). Organic Fertilizers and Soil Conditioner Recover Chemical Fertilizer-Induced Changes in Soil Bacterial Community Diversity in Wine Grape Rhizosphere Soil’. Polish Journal of Environmental Studies, 30(2), 1853–1863. https://doi.org/10.15244/pjoes/126236

Wen, Y. C., Li, H. Y., Lin, Z. A., Zhao, B. Q., Sun, Z. B., Yuan, L., & Li, Y. Q. (2020). Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China Plain’. Scientific Reports, 10(1), 7198. https://doi.org/10.1038/s41598-020-64227-6

Wu, L., Jiang, Y., Zhao, F., He, X., Liu, H., & Yu, K. (2020). Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil’. Scientific Reports, 10(1), 9568. https://doi.org/10.1038/s41598-020-66648-9

Xu, Y., Sun, L., Gao, X., & Wang, J. (2022). Contrasting response of fungal versus bacterial residue accumulation within soil aggregates to long-term fertilization’. Scientific Reports, 12(1), 17834. https://doi.org/10.1038/s41598-022-22064-9

Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z., & Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality’. Scientific Reports, 10(1), 177. https://doi.org/10.1038/s41598-019-56954-2

Author Biographies

Aisyah, Gunadarma University

Paranita Asnur, Gunadarma University

Fitrianingsih, Gunadarma University

Risnawati, Gunadarma University

Downloads

Download data is not yet available.

How to Cite

Aisyah, Asnur, P., Fitrianingsih, & Risnawati. (2025). Effects of Biofertilizer Application and Organic Matter Incubation on Soil Chemical Properties. Jurnal Penelitian Pendidikan IPA, 11(11), 386–397. https://doi.org/10.29303/jppipa.v11i11.13342