Vol. 11 No. 11 (2025): November
Open Access
Peer Reviewed

Seed Nanopriming and Nanosilica Combined with Field Capacity Treatments: Impacts on Chlorophyll and Morphological Traits of Inpari 32 HDB

Authors

Rika Rismayang , Ida Retno Moeljani , Rossyda Priyadarshini , Juli Santoso

DOI:

10.29303/jppipa.v11i11.13375

Published:

2025-12-17

Downloads

Abstract

Drought stress can cause reduced rice production. One effort that can be made is seed nanopriming. This study aims to examine the effect of nanosilica seed nanopriming and field capacity on the chlorophyll content and morphological growth of the Inpari 32 HDB rice variety. The study was designed using a completely randomized factorial design with two factors, namely nanosilica concentration (0, 600, 900, and 1,200 mg/L) and field capacity (3 cm, 100%, 75%, and 50% flooding). The results showed that the treatment combinations produced different responses in physiological and morphological parameters. Chlorophyll content increased with increasing nanosilica concentration, with the highest value found in the treatment with 1,200 mg/L of nanosilica and 3-cm flooding. Plant height and leaf width parameters did not show significant differences, but there was a tendency for better growth at higher nanosilica concentrations. For root length and root wet weight parameters, a very significant interaction was found, where the 1,200 mg/L of nanosilica treatment under flooding conditions produced the longest roots and the highest root biomass. Conversely, a 50% field capacity caused a significant decrease in all observed parameters. Overall, nanosilica seed nanopriming, especially at a concentration of 1,200 mg/L, can increase rice tolerance to drought stress by increasing chlorophyll content, root growth, and root biomass.

Keywords:

Chlorophyll content Field capacity Morphological traits Nanosilica Seed

References

Aboellail, G., Mahdy, A., & Badr Eldin, R. M. (2023). Use of silicon nanoparticles as a seed-priming solution for increasing the germination and growth parameters of faba bean (Vicia faba L.) seedling under salinity stress. Alexandria Journal of Agricultural Sciences, 68(4), 273–287. https://doi.org/10.21608/alexja.2023.237309.1046

Ahmadikhah, A., & Marufinia, A. (2016). Effect of reduced plant height on drought tolerance in rice. 3 Biotech, 6(2), 221. https://doi.org/10.1007/s13205-016-0542-3

Chaniago, I., Chaniago, N., Suliansyah, I., & Rozen, N. (2021). Identification Of Local Rice Genotypes From Deli Serdang, North Sumatera, Indonesia To Drought Stress Condition. Journal of Applied Agricultural Science and Technology, 5(1), 13–27. https://doi.org/10.32530/jaast.v5i1.4

do Espirito Santo Pereira, A., Caixeta Oliveira, H., Fernandes Fraceto, L., & Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2), 267. https://doi.org/10.3390/nano11020267

HanBastian, S. (2013). Efektivitas Komposisi Pupuk Anorganik dan Pupuk Organik Terhadap Pertumbuhan dan Produksi Dua Kultivar Selada (Lactuca satica L.) dalam Sistem Hidroponik Rakit Apung. Jurnal Pertanian, 4(2), 91–99. Retrieved from https://ojs.unida.ac.id/index.php/jp/article/download/60/391

Hao, Y., Yu, Y., Sun, G., Gong, X., Jiang, Y., Lv, G., Zhang, Y., Li, L., Zhao, Y., Sun, D., & others. (2023). Effects of multi-walled carbon nanotubes and nano-silica on root development, leaf photosynthesis, active oxygen and nitrogen metabolism in maize. Plants, 12(8), 1604. https://doi.org/10.3390/plants12081604

Haridjaja, O., Baskoro, D. P. T., & Setianingsih, M. (2013). Perbedaan nilai kadar air kapasitas lapang berdasarkan metode alhricks, drainase bebas, dan pressure plate pada berbagai tekstur tanah dan hubungannya dengan pertumbuhan bunga matahari (Helianthus annuus L. Jurnal Ilmu Tanah Dan Lingkungan, 15(2), 52–59. https://doi.org/10.29244/jitl.15.2.52-59

Hassan, M. A., Dahu, N., Hongning, T., Qian, Z., Yueming, Y., Yiru, L., & Shimei, W. (2023). Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. Frontiers in Plant Science, 14, 1215371. https://doi.org/10.3389/fpls.2023.1215371

Huang, S., & Ma, J. F. (2024). Silicon transport and its “homeostasis” in rice. Quantitative Plant Biology, 5. https://doi.org/10.1017/qpb.2024.19

Hussain, A., Rizwan, M., Ali, Q., & Ali, S. (2019). Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environmental Science and Pollution Research, 26(8), 7579–7588. https://doi.org/10.1007/s11356-019-04210-5

Imtiaz, H., Shiraz, M., Mir, A. R., Siddiqui, H., & Hayat, S. (2023). Nano-priming techniques for plant physio-biochemistry and stress tolerance. Journal of Plant Growth Regulation, 42(11), 6870–6890. https://doi.org/10.1007/s00344-023-10981-6

Kumar, B., Singhal, R. K., Chand, S., Chauhan, J., Kumar, V., Mishra, U. N., Hidangmayum, A., Singh, A., Bose, B., & others. (2022). Nanopriming in sustainable agriculture: recent advances, emerging challenges and future prospective. New and Future Developments in Microbial Biotechnology and Bioengineering, 339–365. https://doi.org/10.1016/B978-0-323-85581-5.00011-2

Kumar, V., Kumar, S., Dwivedi, S., Agnihotri, R., Sharma, P., Mishra, S., Sinam, G., Anto, S., Behera, S. K., Naseem, M., & others. (2025). Combined supplementation of selenium and silica boosts growth and yield of rice (Oryza sativa L.) by stimulating photosynthetic efficiency and nutrient uptake. Physiology and Molecular Biology of Plants, 1–21. https://doi.org/10.1007/s12298-025-01592-4

Li, F., Hou, Y., Chen, L., & Qiu, Y. (2025). Advances in silica nanoparticles for agricultural applications and biosynthesis. Advanced Biotechnology, 3(2), 1–14. https://doi.org/10.1007/s44307-025-00067-7

Meharg, C., & Meharg, A. A. (2015). Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environmental and Experimental Botany, 120, 8–17. https://doi.org/10.1016/j.envexpbot.2015.07.001

Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., & Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. Journal of Nanobiotechnology, 20(1), 254. https://doi.org/10.1186/s12951-022-01423-8

Parent, B., Suard, B., Serraj, R., & Tardieu, F. (2010). Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized. Plant, Cell & Environment, 33(8), 1256–1267. https://doi.org/10.1111/j.1365-3040.2010.02145.x

Putri, F. M., Suedy, S. W. A., & Darmanti, S. (2017). Pengaruh pupuk nanosilika terhadap jumlah stomata, kandungan klorofil dan pertumbuhan padi hitam (Oryza sativa L cv. japonica). Buletin Anatomi Dan Fisiologi, 2(1), 72–79. https://doi.org/10.14710/jekk.v%vi%i.1096

Salam, A., Afridi, M. S., Javed, M. A., Saleem, A., Hafeez, A., Khan, A. R., Zeeshan, M., Ali, B., Azhar, W., Sumaira, & others. (2022). Nano-priming against abiotic stress: A way forward towards sustainable agriculture. Sustainability, 14(22), 14880. https://doi.org/10.3390/su142214880

Salleh, M. S., Nordin, M. S., Puteh, A., Shahari, R., Zainuddin, Z., Ab-Ghaffar, M. B., & Shamsudin, N. A. A. (2022). Drought-induced changes in the flowering capacity, anthesis quality and seed set in rice (Oryza sativa L. Tropical Life Sciences Research, 33(2), 239. https://doi.org/10.21315/tlsr2022.33.2.11

Salve, S., Shelar, A. V, & Mishra, V. (2025). Nano-Priming Technology to Improve Seed Germination and Seedling Development. In Nanotechnology in Agriculture: Pioneering Progress and Challenges (pp. 147–177). Springer. https://doi.org/10.1007/978-3-031-97544-8_6

Sarma, B., Kashtoh, H., Lama Tamang, T., Bhattacharyya, P. N., Mohanta, Y. K., & Baek, K. H. (2023). Abiotic stress in rice: Visiting the physiological response and its tolerance mechanisms. Plants, 12(23), 3948. https://doi.org/10.3390/plants12233948

Surendar, K. K., Raja, R. K., Sritharan, N., Ravichandran, V., Kannan, M., & others. (2024). Impact of Nanosilica on Anatomical, Morpho-Physiological and Yield Characters of Rice (Oryza sativa L.) for Drought Tolerance—A Review. International Journal of Botany and Horticulture Research, 2, 1–10. Retrieved from https://shorturl.asia/YnRb9

Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V., & Kannan, N. (2012). Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. Journal of Nanoparticle Research, 14(12), 1294. https://doi.org/10.1007/s11051-012-1294-7

Taiz, L., & Zeiger, E. (2010). Plant physiology (fifth). Sinauer Assosiates inc.

Wei, H., Jing, Y., Zhang, L., & Kong, D. (2021). Phytohormones and their crosstalk in regulating stomatal development and patterning. Journal of Experimental Botany, 72(7), 2356–2370. https://doi.org/10.1093/jxb/erab034

Author Biographies

Rika Rismayang, East Java Veterans National Development University, Indonesia

Author Origin : Indonesia

Ida Retno Moeljani, East Java Veterans National Development University, Indonesia

Author Origin : Indonesia

Rossyda Priyadarshini, East Java Veterans National Development University, Indonesia

Author Origin : Indonesia

Juli Santoso, East Java Veterans National Development University, Indonesia

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Rismayang, R., Moeljani, I. R., Priyadarshini, R., & Santoso, J. (2025). Seed Nanopriming and Nanosilica Combined with Field Capacity Treatments: Impacts on Chlorophyll and Morphological Traits of Inpari 32 HDB. Jurnal Penelitian Pendidikan IPA, 11(11), 1108–1115. https://doi.org/10.29303/jppipa.v11i11.13375