Vol. 11 No. 11 (2025): November
Open Access
Peer Reviewed

Monte Carlo Simulation as a Predictive Tool in Addressing Demand Volatility

Authors

Khoirudin , Enik Sulistyowati

DOI:

10.29303/jppipa.v11i11.13413

Published:

2025-11-25

Downloads

Abstract

This research aims to estimate the probability distribution of 330 mL product demand at PT XYZ using Monte Carlo simulation to support risk-based production and inventory decisions. Monthly demand data for one year was used to form an empirical probability distribution, followed by random number generation using the Mixed Congruential Generator method and the execution of 100,000 simulation iterations. The simulation results show that demand has a wide range of uncertainty, with the 90th and 95th percentiles falling within the range of 7,000–7,800 units per month. Extreme demand risks were also identified, with the probability of demand exceeding 7,460 units reaching 22.4%. Based on these results, quantile-based safety stock calculations indicate an additional need of approximately 1,800 units to achieve a 90% service level. Validation using Kolmogorov–Smirnov and Chi-Square tests shows that the simulation distribution is consistent with the historical distribution, thus validating the model. Overall, this research produced an accurate and reliable probabilistic framework to support capacity planning, buffer inventory determination, and demand uncertainty risk mitigation at PT XYZ.

Keywords:

Demand forecasting Inventory Management Monte Carlo Simulation Probability Distribution

References

Afroz, T., Morshed, A. J. M., Mohay, S., Islam, M., Islam, A., Chakraborty, D., & Uddin, A. K. M. S. (2025). Heavy metal contamination , nutritional composition , and health risk assessment of biscuits : A Monte Carlo simulation approach. Food Chemistry Advances, 7(December 2024), 100944. https://doi.org/10.1016/j.focha.2025.100944

Afzal, S., Mokhlis, H., Azil, H., Akram, A., & Ramasamy, A. K. (2025). Modeling impact of urban flash floods on power distribution system using Monte Carlo technique and reinforcement learning. 16(July 2024).

Al-kfairy, M. (2025). Telematics and Informatics Reports Modeling retailer adoption of VR shopping using Monte Carlo simulation : A conceptual approach. Telematics and Informatics Reports, 18(November 2024), 100201. https://doi.org/10.1016/j.teler.2025.100201

Asril, A. P. (2022). Simulasi dalam Menganalisis Tingkat Pendapatan Penjualan Produk Bengkel Las menggunakan Metode Monte Carlo. Jurnal Sistim Informasi Dan Teknologi, 5, 7–9. https://doi.org/10.37034/jsisfotek.v5i1.155

Ayun, A. Q., & Azzahra, F. (n.d.). Usulan Perencanaan Peramalan Dan Safety Stock Produksi Amdk Kh-Q 220ml Menggunakan Metode Time SerieS Abstrak.

Desi, E. (2024). Monte Carlo Simulation In Predicting The Level Of Spike In Booster Vaccine Registration At The Martubung Community. 11(3), 579–588. https://doi.org/10.25126/jtiik.937570

Fadaki, M., & Asadikia, A. (2024). International Journal of Production Economics Augmenting Monte Carlo Tree Search for managing service level agreements. International Journal of Production Economics, 271(March), 109206. https://doi.org/10.1016/j.ijpe.2024.109206

Giannelos, S., Pudjianto, D., Strbac, G., & Carlo, M. (2025). Smart home economic operation under uncertainty : comparing monte carlo and stochastic optimization using gaussian and KDE-based data. Operations Research Perspectives, 15(March), 100348. https://doi.org/10.1016/j.orp.2025.100348

Habdillah, H., & Na’am, J. (2024). Simulasi Monte Carlo Untuk Estimasi Pengadaan Atk (Studi Kasus Di Institut Teknologi Padang). Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, 12(1), 56–61. https://doi.org/10.21063/jtif.2024.v12.1.56-61

Hartati, Y., & Putri, F. A. (2024). Metode Single Exponential Smoothing Dalam Peramalan Penjualan Kayu Balok Berbasis Web. 2(3), 1911–1922.

Hasibuan, S., & Amela, F. (2022). Implementasi Quantitative Strategic Planning Matrix ( Qspm ) Dalam Merencanakan Strategi Pemasaran Pada Usaha Minuman Happy Bubble Drink Di Kota Binjai. Jurnal Bisnis Administrasi (BIS-A), 08(c), 26–36.

Kusuma, B. S. (2021). Analisa Peramalan Permintaan Air Minum Dalam Kemasan Pada PT . XYZ Dengan Metode Least Square dan Standard Error of Estimate. 4(1), 42–47.

Le, X., Binh, D. Van, & Lee, G. (2025). Journal of Hydrology : Regional Studies Performance and uncertainty analysis in deep learning frameworks for streamflow forecasting via Monte Carlo dropout technique. Journal of Hydrology: Regional Studies, 61(October 2024), 102668. https://doi.org/10.1016/j.ejrh.2025.102668

Lubis, A. R., Nabila, P., Angraini, S., Sandra, Z. A., Efriyantia, L., Kunci, K., & Carlo, M. (2024). Optimisasi Ramalan Penjualan ATK : Simulasi Monte Carlo Untuk Gandria Store. 3(1), 55–70.

Maggauer, K., & Fina, B. (2025). Monte Carlo simulation-based economic risk assessment in energy communities. Energy Reports, 13(November 2024), 987–1003. https://doi.org/10.1016/j.egyr.2024.12.046

Mei Sedi, P., Hartami Santi, I., & Wulansari, Z. (2023). Prediksi Jumlah Permintaan Besi Di Toko Besi Lancar Menggunakan Simulasi Metode Monte Carlo. JATI (Jurnal Mahasiswa Teknik Informatika), 7(2), 1076–1081. https://doi.org/10.36040/jati.v7i2.6683

Musyarrof, M. A., & Susanty, A. (2021). Peramalan Volume Produksi Air Bersih Menggunakan Metode Time SerieS ( Studi Kasus : PERUMDAM Purwa Tirta Dharma Kabupaten Grobogan ).

Najafi-shad, S., Mollashahi, M., & Mohsen, S. (2024). International Journal of Electrical Power and Energy Systems A new evaluation method for customer outage costs using long-term outage data and Monte Carlo simulation. International Journal of Electrical Power and Energy Systems, 159(May), 110061. https://doi.org/10.1016/j.ijepes.2024.110061

Priyatna, M., Arifin, S., & Fitrianah, D. (2023). Black-Scholes and Monte-Carlo Simulation: Design of a Web-Based Stock Option Pricing Accuracy Comparison Application. International Journal of Intelligent Systems and Applications in Engineering, 11(3), 480–488.

Przysucha, B., Bednarczuk, P., Martyniuk, W., Golec, E., Jasieński, M., & Pliszczuk, D. (2024). Monte Carlo Simulation as a Demand Forecasting Tool. XXVII(2), 103–113.

Puspita, D., Fitriyadi, F., & Khusnuliawati, H. (2025). Prediksi Kebutuhan Air Pdam Giri Tirta Sari Kabupaten Wonogiri Menggunakan Metode Seasonal Autoregressive Integrated Moving Average ( SARIMA ). 9(2), 118–126.

Putri, A. (2025). Monte Carlo Simulation for Seasonal Stock Prediction of Seasoning at AH. 149–160. https://doi.org/10.33364/algoritma/v.22-1.2191

Rahmawati, T., Sari, E. Y., Priyanto, A., Kurniawan, V. R. B., & Jaya, D. D. (2024). Analisis Prediksi Penjualan Wedang Uwuh Instan dengan Simulasi Algoritma Monte Carlo. G-Tech: Jurnal Teknologi Terapan, 8(1), 615–623. https://doi.org/10.33379/gtech.v8i1.3705

Simangunsong, A. (2023). Penerapan Metode Monte Carlo Dalam Simulasi Pengelolaan Persediaan Alat Tulis Kantor. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 22(2), 280. https://doi.org/10.53513/jis.v22i2.8718

Sirin Nauval Duratulhikmah, & Wijaya, F. (2024). Strategi Pengembangan Bisnis Pada Bidang Usaha Putu Bagja Catering Menggunakan Analisis SWOT dan QSPM. JEMSI (Jurnal Ekonomi, Manajemen, Dan Akuntansi), 10(1), 629–637. https://doi.org/10.35870/jemsi.v10i1.2048

Smyl, S., Oreshkin, B. N., Pełka, P., & Dudek, G. (2025). Any-quantile probabilistic forecasting of short-term electricity demand : Fusing uncertainties from diverse sources. Information Fusion, 127(PA), 103637. https://doi.org/10.1016/j.inffus.2025.103637

Thoriq, M., Syaputra, A. E., & Eirlangga, Y. S. (2022). Model Simulasi untuk Memperkirakan Tingkat Penjualan Garam Menggunakan Metode Monte Carlo. Jurnal Informasi Dan Teknologi, 4(4), 242–246. https://doi.org/10.37034/jidt.v4i4.244

Tsani, G. M., Rahmawati, Y., Sanyoto, O. D., & Agustin, S. (2024). Prediksi Penjualan Roti Menggunakan Metode Monte Carlo : Studi Kasus pada Roti Daffa. 3(3), 312–323.

Widyadana, I. G. A., Tanudireja, A. D., & Teng, H. (2024). Optimal Inventory Policy for Stochastic Demand Using Monte Carlo Simulation and Evolutionary Algorithm. 2(1), 8–11. https://doi.org/10.9744/JIRAE.2.1.8-11

Xing, Y., Li, F., Sun, K., Wang, D., Chen, T., & Zhang, Z. (2022). ScienceDirect Multi-type electric vehicle load prediction based on Monte Carlo simulation. Energy Reports, 8, 966–972. https://doi.org/10.1016/j.egyr.2022.05.264

Yudistira, F. D., Larasati, A., & Nurdiansyah, R. (2024). Perencanaan Dan Pengendalian Persediaan Material Menggunakan Simulasi Monte Carlo Dan Eoq Probabilistik. Industri Inovatif : Jurnal Teknik Industri, 14(1), 124–133. https://doi.org/10.36040/industri.v14i1.9035

Zikrina. (2024). Implementasi Simulasi Monte Carlo Untuk Memprediksi Penjualan Beras Berbasis Web. 2(2), 782–792.

Author Biographies

Khoirudin, Universitas Nahdlatul Ulama Pasuruan

Author Origin : Indonesia

Enik Sulistyowati, Universitas Nahdlatul Ulama Pasuruan

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Khoirudin, & Sulistyowati, E. (2025). Monte Carlo Simulation as a Predictive Tool in Addressing Demand Volatility. Jurnal Penelitian Pendidikan IPA, 11(11), 996–1005. https://doi.org/10.29303/jppipa.v11i11.13413