Monte Carlo Simulation as a Predictive Tool in Addressing Demand Volatility
DOI:
10.29303/jppipa.v11i11.13413Published:
2025-11-25Downloads
Abstract
This research aims to estimate the probability distribution of 330 mL product demand at PT XYZ using Monte Carlo simulation to support risk-based production and inventory decisions. Monthly demand data for one year was used to form an empirical probability distribution, followed by random number generation using the Mixed Congruential Generator method and the execution of 100,000 simulation iterations. The simulation results show that demand has a wide range of uncertainty, with the 90th and 95th percentiles falling within the range of 7,000–7,800 units per month. Extreme demand risks were also identified, with the probability of demand exceeding 7,460 units reaching 22.4%. Based on these results, quantile-based safety stock calculations indicate an additional need of approximately 1,800 units to achieve a 90% service level. Validation using Kolmogorov–Smirnov and Chi-Square tests shows that the simulation distribution is consistent with the historical distribution, thus validating the model. Overall, this research produced an accurate and reliable probabilistic framework to support capacity planning, buffer inventory determination, and demand uncertainty risk mitigation at PT XYZ.
Keywords:
Demand forecasting Inventory Management Monte Carlo Simulation Probability DistributionReferences
Afroz, T., Morshed, A. J. M., Mohay, S., Islam, M., Islam, A., Chakraborty, D., & Uddin, A. K. M. S. (2025). Heavy metal contamination , nutritional composition , and health risk assessment of biscuits : A Monte Carlo simulation approach. Food Chemistry Advances, 7(December 2024), 100944. https://doi.org/10.1016/j.focha.2025.100944
Afzal, S., Mokhlis, H., Azil, H., Akram, A., & Ramasamy, A. K. (2025). Modeling impact of urban flash floods on power distribution system using Monte Carlo technique and reinforcement learning. 16(July 2024).
Al-kfairy, M. (2025). Telematics and Informatics Reports Modeling retailer adoption of VR shopping using Monte Carlo simulation : A conceptual approach. Telematics and Informatics Reports, 18(November 2024), 100201. https://doi.org/10.1016/j.teler.2025.100201
Asril, A. P. (2022). Simulasi dalam Menganalisis Tingkat Pendapatan Penjualan Produk Bengkel Las menggunakan Metode Monte Carlo. Jurnal Sistim Informasi Dan Teknologi, 5, 7–9. https://doi.org/10.37034/jsisfotek.v5i1.155
Ayun, A. Q., & Azzahra, F. (n.d.). Usulan Perencanaan Peramalan Dan Safety Stock Produksi Amdk Kh-Q 220ml Menggunakan Metode Time SerieS Abstrak.
Desi, E. (2024). Monte Carlo Simulation In Predicting The Level Of Spike In Booster Vaccine Registration At The Martubung Community. 11(3), 579–588. https://doi.org/10.25126/jtiik.937570
Fadaki, M., & Asadikia, A. (2024). International Journal of Production Economics Augmenting Monte Carlo Tree Search for managing service level agreements. International Journal of Production Economics, 271(March), 109206. https://doi.org/10.1016/j.ijpe.2024.109206
Giannelos, S., Pudjianto, D., Strbac, G., & Carlo, M. (2025). Smart home economic operation under uncertainty : comparing monte carlo and stochastic optimization using gaussian and KDE-based data. Operations Research Perspectives, 15(March), 100348. https://doi.org/10.1016/j.orp.2025.100348
Habdillah, H., & Na’am, J. (2024). Simulasi Monte Carlo Untuk Estimasi Pengadaan Atk (Studi Kasus Di Institut Teknologi Padang). Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, 12(1), 56–61. https://doi.org/10.21063/jtif.2024.v12.1.56-61
Hartati, Y., & Putri, F. A. (2024). Metode Single Exponential Smoothing Dalam Peramalan Penjualan Kayu Balok Berbasis Web. 2(3), 1911–1922.
Hasibuan, S., & Amela, F. (2022). Implementasi Quantitative Strategic Planning Matrix ( Qspm ) Dalam Merencanakan Strategi Pemasaran Pada Usaha Minuman Happy Bubble Drink Di Kota Binjai. Jurnal Bisnis Administrasi (BIS-A), 08(c), 26–36.
Kusuma, B. S. (2021). Analisa Peramalan Permintaan Air Minum Dalam Kemasan Pada PT . XYZ Dengan Metode Least Square dan Standard Error of Estimate. 4(1), 42–47.
Le, X., Binh, D. Van, & Lee, G. (2025). Journal of Hydrology : Regional Studies Performance and uncertainty analysis in deep learning frameworks for streamflow forecasting via Monte Carlo dropout technique. Journal of Hydrology: Regional Studies, 61(October 2024), 102668. https://doi.org/10.1016/j.ejrh.2025.102668
Lubis, A. R., Nabila, P., Angraini, S., Sandra, Z. A., Efriyantia, L., Kunci, K., & Carlo, M. (2024). Optimisasi Ramalan Penjualan ATK : Simulasi Monte Carlo Untuk Gandria Store. 3(1), 55–70.
Maggauer, K., & Fina, B. (2025). Monte Carlo simulation-based economic risk assessment in energy communities. Energy Reports, 13(November 2024), 987–1003. https://doi.org/10.1016/j.egyr.2024.12.046
Mei Sedi, P., Hartami Santi, I., & Wulansari, Z. (2023). Prediksi Jumlah Permintaan Besi Di Toko Besi Lancar Menggunakan Simulasi Metode Monte Carlo. JATI (Jurnal Mahasiswa Teknik Informatika), 7(2), 1076–1081. https://doi.org/10.36040/jati.v7i2.6683
Musyarrof, M. A., & Susanty, A. (2021). Peramalan Volume Produksi Air Bersih Menggunakan Metode Time SerieS ( Studi Kasus : PERUMDAM Purwa Tirta Dharma Kabupaten Grobogan ).
Najafi-shad, S., Mollashahi, M., & Mohsen, S. (2024). International Journal of Electrical Power and Energy Systems A new evaluation method for customer outage costs using long-term outage data and Monte Carlo simulation. International Journal of Electrical Power and Energy Systems, 159(May), 110061. https://doi.org/10.1016/j.ijepes.2024.110061
Priyatna, M., Arifin, S., & Fitrianah, D. (2023). Black-Scholes and Monte-Carlo Simulation: Design of a Web-Based Stock Option Pricing Accuracy Comparison Application. International Journal of Intelligent Systems and Applications in Engineering, 11(3), 480–488.
Przysucha, B., Bednarczuk, P., Martyniuk, W., Golec, E., Jasieński, M., & Pliszczuk, D. (2024). Monte Carlo Simulation as a Demand Forecasting Tool. XXVII(2), 103–113.
Puspita, D., Fitriyadi, F., & Khusnuliawati, H. (2025). Prediksi Kebutuhan Air Pdam Giri Tirta Sari Kabupaten Wonogiri Menggunakan Metode Seasonal Autoregressive Integrated Moving Average ( SARIMA ). 9(2), 118–126.
Putri, A. (2025). Monte Carlo Simulation for Seasonal Stock Prediction of Seasoning at AH. 149–160. https://doi.org/10.33364/algoritma/v.22-1.2191
Rahmawati, T., Sari, E. Y., Priyanto, A., Kurniawan, V. R. B., & Jaya, D. D. (2024). Analisis Prediksi Penjualan Wedang Uwuh Instan dengan Simulasi Algoritma Monte Carlo. G-Tech: Jurnal Teknologi Terapan, 8(1), 615–623. https://doi.org/10.33379/gtech.v8i1.3705
Simangunsong, A. (2023). Penerapan Metode Monte Carlo Dalam Simulasi Pengelolaan Persediaan Alat Tulis Kantor. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 22(2), 280. https://doi.org/10.53513/jis.v22i2.8718
Sirin Nauval Duratulhikmah, & Wijaya, F. (2024). Strategi Pengembangan Bisnis Pada Bidang Usaha Putu Bagja Catering Menggunakan Analisis SWOT dan QSPM. JEMSI (Jurnal Ekonomi, Manajemen, Dan Akuntansi), 10(1), 629–637. https://doi.org/10.35870/jemsi.v10i1.2048
Smyl, S., Oreshkin, B. N., Pełka, P., & Dudek, G. (2025). Any-quantile probabilistic forecasting of short-term electricity demand : Fusing uncertainties from diverse sources. Information Fusion, 127(PA), 103637. https://doi.org/10.1016/j.inffus.2025.103637
Thoriq, M., Syaputra, A. E., & Eirlangga, Y. S. (2022). Model Simulasi untuk Memperkirakan Tingkat Penjualan Garam Menggunakan Metode Monte Carlo. Jurnal Informasi Dan Teknologi, 4(4), 242–246. https://doi.org/10.37034/jidt.v4i4.244
Tsani, G. M., Rahmawati, Y., Sanyoto, O. D., & Agustin, S. (2024). Prediksi Penjualan Roti Menggunakan Metode Monte Carlo : Studi Kasus pada Roti Daffa. 3(3), 312–323.
Widyadana, I. G. A., Tanudireja, A. D., & Teng, H. (2024). Optimal Inventory Policy for Stochastic Demand Using Monte Carlo Simulation and Evolutionary Algorithm. 2(1), 8–11. https://doi.org/10.9744/JIRAE.2.1.8-11
Xing, Y., Li, F., Sun, K., Wang, D., Chen, T., & Zhang, Z. (2022). ScienceDirect Multi-type electric vehicle load prediction based on Monte Carlo simulation. Energy Reports, 8, 966–972. https://doi.org/10.1016/j.egyr.2022.05.264
Yudistira, F. D., Larasati, A., & Nurdiansyah, R. (2024). Perencanaan Dan Pengendalian Persediaan Material Menggunakan Simulasi Monte Carlo Dan Eoq Probabilistik. Industri Inovatif : Jurnal Teknik Industri, 14(1), 124–133. https://doi.org/10.36040/industri.v14i1.9035
Zikrina. (2024). Implementasi Simulasi Monte Carlo Untuk Memprediksi Penjualan Beras Berbasis Web. 2(2), 782–792.
License
Copyright (c) 2025 Khoirudin, Enik Sulistyowati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






