Vol. 11 No. 12 (2025): December
Open Access
Peer Reviewed

Economic, Technological, and Environmental Feasibility of Green Hydrogen Adoption in Transportation: A Techno-Economic and Life Cycle Assessment Approach in Indonesia

Authors

Silfia , Khitara Aldilla Chandra , Ayu Putri Ana , M Reza Alfikri

DOI:

10.29303/jppipa.v11i12.13443

Published:

2025-12-25

Downloads

Abstract

This research comprehensively evaluates the economic, technological, and environmental feasibility of green hydrogen adoption in Bogor City's transportation sector. Utilizing Techno-Economic Assessments (TEA), Life Cycle Assessment (LCA), and Scenario Modeling, the study compares centralized versus decentralized production pathways. TEA findings indicate that decentralized production is not financially viable, while centralized production with CCS technology shows positive financial potential, underscoring the role of economies of scale. LCA results confirm that green hydrogen offers significant emission reduction potential, up to 90% compared to fossil fuel alternatives, and produces zero emissions at the point of use, though high CCS costs remain a constraint. Scenario Modeling determined that Scenario 3 (high carbon tax, government subsidies, and reduced renewable energy prices) is the most effective pathway for accelerated adoption. Cost-Benefit Analysis (CBA) suggests that long-term non-economic benefits, such as improved public health and reduced air pollution, significantly outweigh high initial infrastructure costs. This study provides a novel, integrated assessment for a high-density urban context, advising policymakers to implement a higher carbon tax and subsidies to expedite the transition.

Keywords:

Carbon Tax Feasibility Green Hydrogen Life Cycle Assessment Techno-Economic Assessment

References

Akhtar, M. S., Dickson, R., Niaz, H., Hwang, D. W., & Liu, J. J. (2021). Comparative Sustainability Assessment of a Hydrogen Supply Network for Hydrogen Refueling Stations in Korea – A Techno-Economic and Lifecycle Assessment Perspective. Green Chemistry, 23(23), 9625–9639. https://doi.org/10.1039/d1gc03006j

Alghamdi, H. S., Ali, A., Ajeebi, A. M., Jedidi, A., Sanhoob, M. A., Aktary, M., Shabi, A. H., Usman, M., Alghamdi, W., Alzahrani, S., Aziz, M. A., & Shaikh, M. N. (2024). Catalysts for Liquid Organic Hydrogen Carriers (LOHCs): Efficient Storage and Transport for Renewable Energy. The Chemical Record, 24(11). https://doi.org/10.1002/tcr.202400082

Bakker, S., Contreras, K. D., Kappiantari, M., Tuấn, N. A., Guillen, M. D., Gunthawong, G., Zuidgeest, M., Liefferink, D., & Maarseveen, M. F. A. M. (2017). Low-Carbon Transport Policy in Four ASEAN Countries: Developments in Indonesia, the Philippines, Thailand and Vietnam. Sustainability, 9(7), 1217. https://doi.org/10.3390/su9071217

Cavalcanti, M. H. C., Pappalardo, J. R., Barbosa, L. T., Brasileiro, P. P. F., Roque, B. A. C., Silva, N. M. P. da R. e, Silva, M. F. d., Converti, A., Barbosa, C. M. B. de M., & Sarubbo, L. A. (2024). Hydrogen in Burners: Economic and Environmental Implications. Processes, 12(11), 2434. https://doi.org/10.3390/pr12112434

Chen, X.-L., Yang, Y., Wei, B., Liu, B., Tan, X., Junfu, L., & Lin, L. (2024). Research on Standards and Standard System of Hydrogen Pipeline in China. E3s Web of Conferences, 520, 4016. https://doi.org/10.1051/e3sconf/202452004016

Chowdhury, N. A., Deng, S., Jin, H., Prodius, D., Sutherland, J. W., & Nlebedim, I. C. (2021). Sustainable Recycling of Rare-Earth Elements From NdFeB Magnet Swarf: Techno-Economic and Environmental Perspectives. Acs Sustainable Chemistry & Engineering, 9(47), 15915–15924. https://doi.org/10.1021/acssuschemeng.1c05965

Collis, J., & Schomäcker, R. (2022). Determining the Production and Transport Cost for H2 on a Global Scale. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.909298

Duan, Z., Zhang, L., Feng, L., Yu, S., Jiang, Z., Xu, X., & Hong, J. (2021). Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests. Energies, 14(23), 7856. https://doi.org/10.3390/en14237856

Dutu, R. (2016). Challenges and Policies in Indonesia’s Energy Sector. Energy Policy, 98, 513–519. https://doi.org/10.1016/j.enpol.2016.09.009

Eljack, F., & Kazi, M.-K. (2021). Prospects and Challenges of Green Hydrogen Economy via Multi-Sector Global Symbiosis in Qatar. Frontiers in Sustainability, 1. https://doi.org/10.3389/frsus.2020.612762

Gong, C., Na, H., Kim, H., Yun, S., Cho, H., & Won, W. (2024). Energy-Efficient and Sustainable Design of a Hydrogen Refueling Station Utilizing the Cold Energy of Liquid Hydrogen. Acs Sustainable Chemistry & Engineering, 12(37), 13763–13773. https://doi.org/10.1021/acssuschemeng.4c01921

Habel, C., Tsurko, E. S., Timmins, R. L., Hutschreuther, J., Kunz, R., Schuchardt, D., Rosenfeldt, S., Altstädt, V., & Breu, J. (2020). Lightweight Ultra-High-Barrier Liners for Helium and Hydrogen. Acs Nano, 14(6), 7018–7024. https://doi.org/10.1021/acsnano.0c01633

He, L., Ke, N., Mao, R., Qi, W., & Zhang, H. (2024). From Curtailed Renewable Energy to Green Hydrogen: Infrastructure Planning for Hydrogen Fuel-Cell Vehicles. Manufacturing & Service Operations Management. https://doi.org/10.1287/msom.2022.0381

Hoque, N., Biswas, W. K., Mazhar, I., & Howard, I. (2019). Environmental Life Cycle Assessment of Alternative Fuels for Western Australia’s Transport Sector. Atmosphere, 10(7), 398. https://doi.org/10.3390/atmos10070398

Joshi, H. C., Bagauli, R., Ahmad, W., Bisht, B., & Sharma, R. (2024). A Review on Carbonaceous Materials for Fuel Cell Technologies: An Advanced Approach. Vietnam Journal of Chemistry, 63(1), 23–32. https://doi.org/10.1002/vjch.202300407

Kanz, O., Bittkau, K., Ding, K., Rau, U., & Reinders, A. (2023). Life Cycle Global Warming Impact of Long-Distance Liquid Hydrogen Transport From Africa to Germany. Hydrogen, 4(4), 760–775. https://doi.org/10.3390/hydrogen4040048

Kurniawati, T., Akbar, U. U., Marwan, M., Shaari, M. S., Rahman, N. H. A., & Ridzuan, A. R. (2024). Examining the Environmental Impact of the Construction and Transportation Sectors in Indonesia. 303–316. https://doi.org/10.1007/978-3-031-73632-2_26

Law, L. C., Mastorakos, E., & Evans, S. (2022). Estimates of the Decarbonization Potential of Alternative Fuels for Shipping as a Function of Vessel Type, Cargo, and Voyage. Energies, 15(20), 7468. https://doi.org/10.3390/en15207468

Lindner, R. (2022). Green Hydrogen Partnerships With the Global South. Advancing an Energy Justice Perspective on “Tomorrow’s Oil.” Sustainable Development, 31(2), 1038–1053. https://doi.org/10.1002/sd.2439

Liu, Z.-Z., Fan, R., Zhou, Y., Ning, Y., Dong, B., & Yan, Z. (2024). Binary Ni–W Metal Sulfides with Polyhedral Nanostructures Towards Efficient Hydrogen Evolution. Inorganic Chemistry Frontiers, 11(20), 6998–7007. https://doi.org/10.1039/d4qi01806k

Lyu, R. (2025). Life Cycle Assessment Based on Whole Industry Chain Assessment of FCEVs. Sustainability, 17(12), 5431. https://doi.org/10.3390/su17125431

Ma, F., Guo, L., Li, Z., Zeng, X., Zheng, Z., Li, W., Zhao, F., & Yu, W. (2023). A Review of Current Advances in Ammonia Combustion From the Fundamentals to Applications in Internal Combustion Engines. Energies, 16(17), 6304. https://doi.org/10.3390/en16176304

Meng, L., Li, M., & Asuka, J. (2024). A Scenario Analysis of the Energy Transition in Japan’s Road Transportation Sector Based on the LEAP Model. Environmental Research Letters, 19(4), 44059. https://doi.org/10.1088/1748-9326/ad3566

O̸stby, E., Hugaas, B.-A., & Horn, A. M. (2021). Hydrogen’s Peculiar Effect on Material Properties: Do We Need to Be Concerned About Hydrogen Transport in Pipelines? https://doi.org/10.1115/omae2021-63753

Qian, S., & Li, L. (2023). A Comparison of Well-to-Wheels Energy Use and Emissions of Hydrogen Fuel Cell, Electric, LNG, and Diesel-Powered Logistics Vehicles in China. Energies, 16(13), 5101. https://doi.org/10.3390/en16135101

Revinova, S., Lazanyuk, I., Gabrielyan, B., Shahinyan, T., & Hakobyan, Y. (2024). Hydrogen in Energy Transition: The Problem of Economic Efficiency, Environmental Safety, and Technological Readiness of Transportation and Storage. Resources, 13(7), 92. https://doi.org/10.3390/resources13070092

Rolo, I., Costa, V. A. F., & Brito, F. P. (2023). Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges. Energies, 17(1), 180. https://doi.org/10.3390/en17010180

Shin, Y., Oh, J., & Shin, D. (2023). Analysis of the Total Energy Consumption Through Hydrogen Compression for the Operating Pressure Optimization of an Alkaline Water Electrolysis System. Korean Journal of Chemical Engineering, 40(12), 2800–2814. https://doi.org/10.1007/s11814-023-1540-x

Silfia. (2025). Manajemen Terpadu (SDM, Strategi, dan Keuangan untuk Keberlanjutan Bisnis). Azzia Karya Bersama.

Sitinjak, C., Tahir, Z., Toriman, M. E., Lyndon, N., Šimić, V., Musselwhite, C., Simanullang, W. F., & Hamzah, F. M. (2023). Assessing Public Acceptance of Autonomous Vehicles for Smart and Sustainable Public Transportation in Urban Areas: A Case Study of Jakarta, Indonesia. Sustainability, 15(9), 7445. https://doi.org/10.3390/su15097445

Ustolin, F., Campari, A., & Taccani, R. (2022). An Extensive Review of Liquid Hydrogen in Transportation With Focus on the Maritime Sector. Journal of Marine Science and Engineering, 10(9), 1222. https://doi.org/10.3390/jmse10091222

Wang, H., Aung, M. Z., Xu, X., & Boulougouris, E. (2023). Life Cycle Analysis of Hydrogen Powered Marine Vessels—Case Ship Comparison Study With Conventional Power System. Sustainability, 15(17), 12946. https://doi.org/10.3390/su151712946

Wang, T., Zhang, X., Yu, X., Li, J., Wang, K., & Niu, J. (2024). Interfacial Interaction in NiFe LDH/NiS2/VS2 for Enhanced Electrocatalytic Water Splitting. Molecules, 29(5), 951. https://doi.org/10.3390/molecules29050951

Wong, E. Y., Ho, D. C. K., So, S., Chi-Wing, T., & Chan, E. M. H. (2021). Life Cycle Assessment of Electric Vehicles and Hydrogen Fuel Cell Vehicles Using the GREET Model—A Comparative Study. Sustainability, 13(9), 4872. https://doi.org/10.3390/su13094872

Author Biographies

Silfia, Universitas Teknologi Nusantara

Author Origin : Indonesia

Khitara Aldilla Chandra, Universitas Teknologi Nusantara

Author Origin : Indonesia

Ayu Putri Ana, Universitas Teknologi Nusantara

Author Origin : Indonesia

M Reza Alfikri, Universitas Teknologi Nusantara

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Silfia, Chandra, K. A., Ana, A. P., & Alfikri, M. R. (2025). Economic, Technological, and Environmental Feasibility of Green Hydrogen Adoption in Transportation: A Techno-Economic and Life Cycle Assessment Approach in Indonesia. Jurnal Penelitian Pendidikan IPA, 11(12), 1322–1331. https://doi.org/10.29303/jppipa.v11i12.13443