Formulation and Nutrient Component Analysis of Various Cost-Effective Bacterial Culture Media Based on Horticultural Waste

Authors

Handarini , Putri Sopiyani , Deni Farizal , Alby Salman Al Farizi MK , Wasiyah Khusna Fadhilah

DOI:

10.29303/jppipa.v11i12.13545

Published:

2025-12-25

Downloads

Abstract

Horticultural waste, which is often overlooked, has great potential as an alternative raw material for cost-effective and environmentally friendly culture media. This study aims to develop a cost-effective alternative bacterial culture media formulation by utilizing horticultural waste. In addition, this study also aims to analyze the nutritional components of the formulated media to ensure its effectiveness in supporting bacterial growth. The results showed that E. coli was able to grow on all types of test media. This indicates slower growth compared to the control media. The average number of E. coli colonies on BW Agar and CW Agar at concentrations of 10%, 15%, and 20% after incubation for 48 hours was >300 CFU/mL. Meanwhile, the average number of E. coli colonies on PW Agar at concentrations of 10%, 15%, and 20% was 126 × 10⁷ CFU/mL, 171 × 10⁷ CFU/mL, and 225 × 10⁷ CFU/mL, respectively. The number of S. aureus colonies was only obtained on BW Agar with concentrations of 10%, 15%, and 20%, namely 77 × 10⁷ CFU/mL on BW Agar 10%, 200 × 10⁷ CFU/mL on BW Agar 15%, and 300 × 10⁷ CFU/mL on BW Agar 20%. Based on these results, the optimal formulations representing each type of test media selected for nutrient content analysis were BW Agar 20%, CW Agar 20%, and PW Agar 20%.

Keywords:

Alternative bacterial media Formulation Horticultural waste Macronutrient analysis Micronutrient analysis

References

Ahmad, T., Cawood, M., Iqbal, Q., & Batool, A. (2019). Phytochemicals in Daucus carota and Their Health Benefits — Review Article. Foods, 8(9), 1–22. https://doi.org/10.3390/foods8090424 DOI: https://doi.org/10.3390/foods8090424

Alteri, C. J., Himpsl, S. D., Shea, A. E., & Mobley, H. L. T. (2019). Flexible metabolism and suppression of latent enzymes are important for escherichia coli adaptation to diverse environments within the host. Journal of Bacteriology, 201(16). https://doi.org/10.1128/JB.00181-19 DOI: https://doi.org/10.1128/JB.00181-19

Alteri, C. J., & Mobley, H. L. T. (2015). Metabolism and fitness of urinary tract pathogens. Metabolism and Bacterial Pathogenesis, 3(3), 215–230. https://doi.org/10.1128/9781555818883.ch10 DOI: https://doi.org/10.1128/9781555818883.ch10

Andriani, R. D., Akeprathumchai, S., Laoteng, K., Poomputsa, K., & Mekvichitsaeng, P. (2013). Utilization of Pineapple Juice Base Growth Medium for Lipid Production by Xanthophyllomyces dendrorhous. Jurnal Teknologi Pertanian, 14(3), 193–200. https://doi.org/https://jtp.ub.ac.id/index.php/jtp/article/view/411

Ansari, N. A. I. M., Ramly, N., Faujan, N. H., & Arifin, N. (2023). Nutritional Content and Bioactive Compounds of Banana Peel and Its Potential Utilization : A Review. Malaysian J Sci Heal Technol, 9(1), 74–86. https://doi.org/https://mjosht.usim.edu.my/index.php/mjosht/article/view/313 DOI: https://doi.org/10.33102/mjosht.v9i1.313

Astrinia, S. D. (2022). Produksi Asam Sitrat Dari Ekstrak Buah Nanas (Ananas comosus L. Merr) Sebagai Diversifikasi Produk Agroindustri di Kabupaten Semarang. Media Informasi Penelitian Kabupaten Semarang, 4(2), 58–69. https://doi.org/file:///C:/Users/limlo/Downloads/hal+58-69.pdf

Bédard, A. V., Michaud, A., Quenette, F., Singh, N., Martins, F. D. L., Wade, J. T., Guillier, M., & Lafontaine, D. A. (2024). Regulation of magnesium ion transport in Escherichia coli : insights into the role of the 5 ’ upstream region in corA expression. RNA Biology, 21(1), 1171–1183. https://doi.org/10.1080/15476286.2024.2421665 DOI: https://doi.org/10.1080/15476286.2024.2421665

Bertranda, R. L. (2019). Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. Journal of Bacteriology, 201(7). https://doi.org/10.1128/JB.00697-18 DOI: https://doi.org/10.1128/JB.00697-18

Biase, D. De, & Lund, P. A. (2015). The Escherichia coli Acid Stress Response and Its Signi fi cance for Pathogenesis. In BS:AAM (Vol. 92). Elsevier. https://doi.org/10.1016/bs.aambs.2015.03.002 DOI: https://doi.org/10.1016/bs.aambs.2015.03.002

Bonnet, M., Lagier, J. C., Raoult, D., & Khelai, S. (2020). Bacterial culture through selective and non-selective conditions : the evolution of culture media in clinical microbiology. New Microbes and New Infections, 34(C), 1–11. https://doi.org/10.1016/j.nmni.2019.100622 DOI: https://doi.org/10.1016/j.nmni.2019.100622

Ciccoritti, R., Ciorba, R., Ceccarelli, D., Amoriello, M., & Amoriello, T. (2024). applied sciences Phytochemical and Functional Properties of Fruit and Vegetable Processing By-Products. Applied Sciences, 14(20), 1–18. DOI: https://doi.org/10.3390/app14209172

Domínguez, D. C. (2018). Calcium Calcium Signaling Signaling in in Prokaryotes Prokaryotes. Calcium and Signal Transduction, 1(1), 91–106. https://doi.org/10.5772/intechopen.78546 DOI: https://doi.org/10.5772/intechopen.78546

Dzulqaidah, I., Zanuba, R. B., Siti, A., Alwi, F., & Putri, A. R. (2021). Ekstraksi dan uji aktivitas enzim bromelin kasar dari buah nanas Extraction and activity test of crude bromelain enzyme from pineapple fruit. Journal of Agritechnology and Food Processing, 1(2), 80–84. https://doi.org/https://doi.org/10.31764/jafp.v1i2.6974 DOI: https://doi.org/10.31764/jafp.v1i2.6974

Egeten, K. R., Yamlean, P. V. Y., & Supriati, H. S. (2016). Formulasi dan pengujian sediaan granul effervescent sari buah nanas (Ananas comosus L.(Merr.)). Pharmacon, 5(3), 1–6. https://doi.org/https://doi.org/10.35799/pha.5.2016.12945

Elsas, J. D. Van, Semenov, A. V, Costa, R., & Trevors, J. T. (2011). Survival of Escherichia coli in the environment : fundamental and public health aspects. The ISME Journal, 5(2), 173–183. https://doi.org/10.1038/ismej.2010.80 DOI: https://doi.org/10.1038/ismej.2010.80

Gorochowski, T. E., Avcilar-kucukgoze, I., Bovenberg, R. A. L., Roubos, J. A., & Ignatova, Z. (2016). A Minimal Model of Ribosome Allocation Dynamics Captures Trade- o ff s in Expression between Endogenous and Synthetic Genes. ACS Synthetic Biology, 5(7), 710–720. https://doi.org/10.1021/acssynbio.6b00040 DOI: https://doi.org/10.1021/acssynbio.6b00040

Handarini, Pakpahan Suyarta Efrida, & Hatimah Irma. (2018). Potensi Medium Air Cucian Beras Agar Sebagai Medium Pertumbuhan Aspergillus niger. Ejournal Poltekkes Denpasar, 6(1), 17–26. http://ejournal.poltekkes-denpasar.ac.id/index.php/M DOI: https://doi.org/10.33992/m.v6i1.238

Hermsen, R., Okano, H., You, C., Werner, N., & Hwa, T. (2015). A growth-rate composition formula for the growth of E . coli on co-utilized carbon substrates. Molecular Systems Biology, 11(4), 1–6. https://doi.org/10.15252/msb.20145537 DOI: https://doi.org/10.15252/msb.20145537

Jiao, J., Lv, X., Shen, C., & Morigen, M. (2024). Genome and transcriptomic analysis of the adaptation of Escherichia coli to environmental stresses. Computational and Structural Biotechnology Journal, 23(February), 2132–2140. https://doi.org/10.1016/j.csbj.2024.05.033 DOI: https://doi.org/10.1016/j.csbj.2024.05.033

Kumari, P., & Tiwari, R. K. (2023). Banana and its by ‐ products : A comprehensive review on its nutritional composition and pharmacological bene fi ts. EFood, 5(5), 1–23. https://doi.org/10.1002/efd2.110 DOI: https://doi.org/10.1002/efd2.110

Li, Z., Huang, Z., & Gu, P. (2024). Response of Escherichia coli to Acid Stress : Mechanisms and Applications — A Narrative Review. Microorganisms, 12(9), 1–12. https://doi.org/https://doi.org/10.3390/microorganisms12091774 DOI: https://doi.org/10.3390/microorganisms12091774

Lobo, M. G., & Dorta, E. (2019). Utilization and management of horticultural waste. In Postharvest Technology of Perishable Horticultural Commodities. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813276-0.00019-5 DOI: https://doi.org/10.1016/B978-0-12-813276-0.00019-5

Machado, H., Weng, L. L., Dillon, N., Seif, Y., Holland, M., Pekar, J. E., & Feist, A. M. (2019). crossm Strain-Specific Metabolic Requirements Revealed by a Defined. Applied and Environmental Microbiology, 85(21), 1–13. https://doi.org/10.1128/AEM.01773-19 DOI: https://doi.org/10.1128/AEM.01773-19

Nairz, M., Schroll, A., Sonnweber, T., & Weiss, G. (2010). Microreview The struggle for iron a metal at the host pathogen interface. Cellular Microbiology, 12(12), 1691–1702. https://doi.org/10.1111/j.1462-5822.2010.01529.x DOI: https://doi.org/10.1111/j.1462-5822.2010.01529.x

Orekan, J., Barbé, B., Oeng, S., Ronat, J. B., Letchford, J., Jacobs, J., & Hardy, L. (2021). Culture media for clinical bacteriology in low- and middle-income countries : challenges , best practices for preparation and recommendations for improved access. Clinical Microbiology and Infection Journal, 27(3), 1400–1408. https://doi.org/10.1016/j.cmi.2021.05.016 DOI: https://doi.org/10.1016/j.cmi.2021.05.016

Parsons, J. B., & Rock, C. O. (2013). Progress in Lipid Research Bacterial lipids : Metabolism and membrane homeostasis. Progress in Lipid Research, 52(3), 249–276. https://doi.org/10.1016/j.plipres.2013.02.002 DOI: https://doi.org/10.1016/j.plipres.2013.02.002

Poba, D., Ijirana, I., & Sakung, J. (2019). Crude bromelain enzyme activities based on maturity level of pineapple. Jurnal Akademika Kimia, 8(4), 236–241. https://doi.org/10.22487/j24775185.2019.v8.i4.pp236-241 DOI: https://doi.org/10.22487/j24775185.2019.v8.i4.pp236-241

Price, M. N., Wetmore, K. M., Waters, R. J., Callaghan, M., Ray, J., Liu, H., Jennifer, V., Melnyk, R. A., Lamson, J. S., Suh, Y., Carlson, H. K., Esquivel, Z., Sadeeshkumar, H., Chakraborty, R., Zane, G. M., Rubin, B. E., Wall, J. D., Visel, A., Bristow, J., … Adam, P. (2018). Mutant phenotypes for thousands of bacterial genes of unknown function. Nature, 557(7706), 503–509. https://doi.org/10.1038/s41586-018-0124-0 DOI: https://doi.org/10.1038/s41586-018-0124-0

Reslane, I., Watson, G. F., Handke, L. D., & Fey, P. D. (2024). Regulatory dynamics of arginine metabolism in Staphylococcus aureus. Biochemical Society Transactions, 52(6), 2513–2523. https://doi.org/10.1042/BST20240710 DOI: https://doi.org/10.1042/BST20240710

Romelle, F. D., P., A. R., & Manohar, R. S. (2018). Chemical Composition of Some Selected Fruit Peels. European Journal of Food Science and Technology, 10(December), 1920–1927. https://doi.org/https://www.researchgate.net/publication/326579276

Sadef, Y., Javed, T., Javed, R., Mahmood, A., Alwahibi, M. S., Elshikh, M. S., AbdelGawwa, M. R., Alhaji, J. H., & Rasheed, R. A. (2022). Nutritional status, antioxidant activity and total phenolic content of different fruits and vegetables’ peels. PLoS ONE, 17(5 May), 1–9. https://doi.org/10.1371/journal.pone.0265566 DOI: https://doi.org/10.1371/journal.pone.0265566

Santos, D. I., Faria, D. L., Lourenço, S. C., Alves, V. D., Saraiva, J. A., Vicente, A., & Mold, M. (2021). applied sciences Heat Treatment and Wounding as Abiotic Stresses to Enhance the Bioactive Composition of Pineapple By-Products. Applied Sciences, 11(9), 1–22. https://doi.org/https://doi.org/10.3390/app11094313 DOI: https://doi.org/10.3390/app11094313

Schmidt, A., Kochanowski, K., Vedelaar, S., Ahrné, E., Volkmer, B., Callipo, L., Knoops, K., Bauer, M., & Aebersold, R. (2016). Europe PMC Funders Group The quantitative and condition-dependent Escherichia coli proteome. Nature Biotechnology, 34(1), 104–110. https://doi.org/10.1038/nbt.3418.The DOI: https://doi.org/10.1038/nbt.3418

Tame, V. T., & Hanson, L. G. (2024). Quantification and Nutrient Compositions Of Carrot (Daucus carrota L.) and Cabbage (Brassica oleracea L.) Wastes and Its Utilization In Fortification of Maize-Based Masa. FUW Trends in Science & Technology Journal, 9(2), 4–6. https://doi.org/https://www.ftstjournal.com/uploads/docs/92%20Article%2029.pdf

EJ., U., US., E., PS., T., MF., A., Ebong, A. S., DI., U., & Udosen, CI. (2022). Formulation And Evaluation of Alternative Microbial Culture Media To Agar-Based Media Using Local Plants Seeds. World Journal of Applied Science and Technology, 14(2), 60–68.

Wang, X. (2019). Growth strategy of microbes on mixed carbon sources. Nature Communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-09261-3 DOI: https://doi.org/10.1038/s41467-019-09261-3

Wood, J. M. (2015). Bacterial responses to osmotic challenges. The Journal of General Physiology, 145(5), 381–388. https://doi.org/10.1085/jgp.201411296 DOI: https://doi.org/10.1085/jgp.201411296

You, C., Okano, H., Hui, S., Zhang, Z., Kim, M., Gunderson, C. W., Wang, Y., Lenz, P., Yan, D., & Hwa, T. (2013). Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature, 143, 1–6. https://doi.org/10.1038/nature12446 DOI: https://doi.org/10.1038/nature12446

Author Biographies

Handarini, Institut Kesehatan Rajawali

Author Origin : Indonesia

Putri Sopiyani, Institut Kesehatan Rajawali

Author Origin : Indonesia

Deni Farizal, Institut Kesehatan Rajawali

Author Origin : Indonesia

Alby Salman Al Farizi MK, Institut Kesehatan Rajawali

Author Origin : Indonesia

Wasiyah Khusna Fadhilah, Institut Kesehatan Rajawali

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Handarini, Sopiyani, P., Farizal, D., MK, A. S. A. F., & Fadhilah, W. K. (2025). Formulation and Nutrient Component Analysis of Various Cost-Effective Bacterial Culture Media Based on Horticultural Waste. Jurnal Penelitian Pendidikan IPA, 11(12), 1098–1105. https://doi.org/10.29303/jppipa.v11i12.13545