Design and Implementation of a Public Sentiment Prediction Framework on Budget Efficiency Policy using Support Vector Machine, Naïve Bayes, and Random Forest
DOI:
10.29303/jppipa.v11i12.13561Published:
2025-12-25Downloads
Abstract
Public sentiment toward government budget efficiency policies has become increasingly visible through social media platforms, where citizens actively express opinions, support, and criticism. This study aims to analyze public sentiment toward budget efficiency policies using data collected from the social media platform X (formerly Twitter). A total of 2,000 public comments related to budget efficiency policies were collected through web scraping using the X API. The data were preprocessed through normalization, case folding, text cleaning, tokenization, stopword removal, and stemming. Sentiment classification was conducted using three machine learning algorithms: Naive Bayes, Support Vector Machine (SVM), and Random Forest. Model performance was evaluated using accuracy, precision, recall, and F1-score. The results indicate that SVM achieved the highest accuracy, while Random Forest demonstrated superior recall in identifying positive sentiment. These findings suggest that Random Forest is particularly suitable for sentiment analysis tasks where minimizing false negatives is important, while SVM performs well in overall classification accuracy. This research contributes to the comparative evaluation of machine learning models for public sentiment analysis on policy-related issues using social media data.
Keywords:
Budget Efficiency Policy Naïve Bayes Random forest Sentiment Support vector machineReferences
Amaliah, S., Nusrang, M., & Aswi, A. (2022). Penerapan metode Random Forest untuk klasifikasi varian minuman kopi di Kedai Kopi Konijiwa Bantaeng. Journal of Statistics and Its Application on Teaching and Research, 4(3), 121–127. https://doi.org/10.35580/variansiunm31
Bafail, O. (2024). Optimizing smart city strategies: A data-driven analysis using random forest and regression analysis. Applied Sciences, 14(23), 11022. https://doi.org/10.3390/app142311022
Bei, F., & Sudin, S. (2021). Analisis sentimen aplikasi tiket online di Play Store menggunakan metode Support Vector Machine (SVM). Prosiding Seminar Nasional Sistem Informasi Dan Manajemen Informatika Universitas Nusa Putra, 1(1), 91–97. Retrieved from https://sismatik.nusaputra.ac.id/index.php/sismatik/en/article/view/13
Hafika, R. A., Hafiz, A., Waruwu, S. A., Noor, M. Y., Sitohang, Y. A. A., & Saputra, K. (2025). Efisiensi anggaran dalam wacana publik: Analisis sentimen platform X dengan Naive Bayes. Jurnal Mahasiswa Teknik Informatika, 9(4), 6093–6099. Retrieved from https://mail.ejournal.itn.ac.id/index.php/jati/article/view/13967
Hayami, R., Soni, & Gunawan, I. (2022). Klasifikasi jamur menggunakan algoritma Naïve Bayes. Journal Computer Sciences, Informatics, Technology, 3(1), 28–33. https://doi.org/10.37859/coscitech.v3i1.3685
He, Y., Wu, C., & Fan, Y. (2024). Exploring the drivers of local government budget coordination: A random forest regression analysis. International Review of Economics & Finance, 93, 1104–1113. https://doi.org/10.1016/j.iref.2024.04.004
Husada, H. C., & Paramita, A. S. (2021). Analisis sentimen pada maskapai penerbangan di platform Twitter menggunakan algoritma Support Vector Machine (SVM. Teknika, 10(1), 18–26. https://doi.org/10.34148/teknika.v10i1.311
Insan, M. K., Hayati, U., & Nurdiawan, O. (2023). Analisis sentimen aplikasi Brimo pada ulasan pengguna di Google Play menggunakan algoritma Naive Bayes. Jurnal Teknik Informatika, 7(1), 478–483. Retrieved from https://mail.ejournal.itn.ac.id/index.php/jati/article/view/6373
Jasmarizal, J., Junadhi, Rahmaddeni, & Anam, M. K. (2024). Penerapan metode Support Vector Machine untuk analisis sentimen terhadap produk skincare. The Indonesian Journal of Computer Science, 13(1), 1438–1450. https://doi.org/10.33022/ijcs.v13i1.3654
Kaharudin, A., & Supriyadi, A. A. (2023). Analisis sentimen pada media sosial dengan teknik kecerdasan buatan Naïve Bayes: Kajian literatur review. Jurnal Ilmu Komputer Dan Sains, 2(6), 1642–1649. Retrieved from https://shorturl.asia/f8ugN
Kementrian Sekretariat Negara, R. (2025). Instruksi Presiden (Inpres) Nomor 1 Tahun 2025 tentang Efisiensi Belanja dalam Pelaksanaan Anggaran Pendapatan dan Belanja Negara dan Anggaran Pendapatan dan Belanja Daerah Tahun Anggaran 2025. Retrieved from https://peraturan.bpk.go.id/Details/313401/inpres-no-1-tahun-2025
Khoiruddin, M., Junaidi, A., & Saputra, W. A. (2022). Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network. Journal of Dinda: Data Science, Information Technology, and Data Analytics, 2(1), 37–45. Retrieved from https://journal.ittelkom-pwt.ac.id/index.php/dinda/article/view/341
Kusnadi, P. A., Padilah, T. N., & Sari, B. N. (2024). Analisis sentimen penerapan sistem pembayaran tol multi lane free flow menggunakan Naïve Bayes classifier. Jurnal Teknik Informatika, 8(4), 7398–7404. https://doi.org/10.36040/jati.v8i4.10232
Maharani, M. Z. (2024). Analisis sentimen positif terhadap Avoskin sebagai eco friendly brand di media sosial X dan TikTok. Filosofi: Publikasi Ilmu Komunikasi, Desain, Seni Budaya, 1(3), 125–140. https://doi.org/10.62383/filosofi.v1i3.169
Mas’ud, F., Jeluhur, H., Negat, K., Tefa, A., Uly, M., & Amtiran, M. (2025). Etika dalam media sosial antara kebebasan ekspresi dan tanggung jawab digital. Jimmi: Jurnal Ilmiah Mahasiswa Multidisiplin, 2(2), 235–246. https://doi.org/10.71153/jimmi.v2i2.289
Moraes, R., Valiati, J. F., & Neto, W. P. G. (2013). Document-level sentiment classification: An empirical comparison between SVM and ANN. Expert Systems with Applications, 40(2), 621–633. https://doi.org/10.1016/j.eswa.2012.07.059
Muhammadin, A., & Sobari, I. A. (2021). Analisis sentimen pada ulasan aplikasi Kredivo dengan algoritma SVM dan NBC. Reputasi Jurnal Rekayasa Perangkat Lunak, 2(2), 85–91. https://doi.org/10.31294/reputasi.v2i2.785
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes classifier dan confusion matrix pada analisis sentimen berbasis teks pada Twitter. Journal Sains Komputer Informatika, 5(2), 697–711. Retrieved from https://shorturl.asia/3L1aR
Pratama, M. M. H. R. (2025). Comparison of Support Vector Machine (SVM) and Naïve Bayes algorithm performance in analyzing Garuda bird design sentiment in IKN. Journal of Informatics and Telecommunication Engineering, 8(3), 1–8. https://doi.org/10.31289/jite.v8i3Spc.14830
Salman, & Ikbal, M. (2025). Analisis efektivitas kebijakan efisiensi anggaran: Ditinjau dari aspek ekonomi. Journal of Economics Development Research, 1(2), 68–72. https://doi.org/10.71094/joeder.v1i2.99
Saputra, I., Pambudi, R. S. A., Darono, H. E., Amsury, F., Fahdia, M. R., Ramadhan, B., & Ardiansyah, A. (2021). Analisis sentimen pengguna marketplace Bukalapak dan Tokopedia di Twitter menggunakan machine learning. Faktor Exacta, 13(4). https://doi.org/10.30998/faktorexacta.v13i4.7074
Suryati, E., Styawati, & Aldino, A. A. (2023). Analisis sentimen transportasi online menggunakan ekstraksi fitur model Word2Vec text embedding dan algoritma Support Vector Machine (SVM. Jurnal Teknologi Dan Sistem Informatika, 4(1), 96–106. Retrieved from https://shorturl.asia/gaUo5
Vincent, R., Maulana, I., & Komarudin, O. (2024). Perbandingan klasifikasi Naive Bayes dan Support Vector Machine dalam analisis sentimen dengan multiclass di Twitter. Jurnal Teknik Informatika, 7(4), 2496–2505. Retrieved from https://mail.ejournal.itn.ac.id/index.php/jati/article/view/7152
Zhang, J. (2024). Impact of an improved random forest-based financial management model on the effectiveness of corporate sustainability decisions. Systems and Soft Computing, 6, 200102. https://doi.org/10.1016/j.sasc.2024.200102
Zhu, Y., Tan, Y., Hua, Y., Wang, M., Zhang, G., & Zhang, J. (2010). Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. Journal of Digital Imaging, 23(1), 51–65. https://doi.org/10.1007/s10278-009-9185-9
License
Copyright (c) 2025 M Sahyudi, Sampurna Dadi Riskiono, Ryan Randy Suryono

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






