Vol. 11 No. 12 (2025): December
Open Access
Peer Reviewed

Design and Implementation of a Public Sentiment Prediction Framework on Budget Efficiency Policy using Support Vector Machine, Naïve Bayes, and Random Forest

Authors

M Sahyudi , Sampurna Dadi Riskiono , Ryan Randy Suryono

DOI:

10.29303/jppipa.v11i12.13561

Published:

2025-12-25

Downloads

Abstract

Public sentiment toward government budget efficiency policies has become increasingly visible through social media platforms, where citizens actively express opinions, support, and criticism. This study aims to analyze public sentiment toward budget efficiency policies using data collected from the social media platform X (formerly Twitter). A total of 2,000 public comments related to budget efficiency policies were collected through web scraping using the X API. The data were preprocessed through normalization, case folding, text cleaning, tokenization, stopword removal, and stemming. Sentiment classification was conducted using three machine learning algorithms: Naive Bayes, Support Vector Machine (SVM), and Random Forest. Model performance was evaluated using accuracy, precision, recall, and F1-score. The results indicate that SVM achieved the highest accuracy, while Random Forest demonstrated superior recall in identifying positive sentiment. These findings suggest that Random Forest is particularly suitable for sentiment analysis tasks where minimizing false negatives is important, while SVM performs well in overall classification accuracy. This research contributes to the comparative evaluation of machine learning models for public sentiment analysis on policy-related issues using social media data.

 

Keywords:

Budget Efficiency Policy Naïve Bayes Random forest Sentiment Support vector machine

References

Amaliah, S., Nusrang, M., & Aswi, A. (2022). Penerapan metode Random Forest untuk klasifikasi varian minuman kopi di Kedai Kopi Konijiwa Bantaeng. Journal of Statistics and Its Application on Teaching and Research, 4(3), 121–127. https://doi.org/10.35580/variansiunm31

Bafail, O. (2024). Optimizing smart city strategies: A data-driven analysis using random forest and regression analysis. Applied Sciences, 14(23), 11022. https://doi.org/10.3390/app142311022

Bei, F., & Sudin, S. (2021). Analisis sentimen aplikasi tiket online di Play Store menggunakan metode Support Vector Machine (SVM). Prosiding Seminar Nasional Sistem Informasi Dan Manajemen Informatika Universitas Nusa Putra, 1(1), 91–97. Retrieved from https://sismatik.nusaputra.ac.id/index.php/sismatik/en/article/view/13

Hafika, R. A., Hafiz, A., Waruwu, S. A., Noor, M. Y., Sitohang, Y. A. A., & Saputra, K. (2025). Efisiensi anggaran dalam wacana publik: Analisis sentimen platform X dengan Naive Bayes. Jurnal Mahasiswa Teknik Informatika, 9(4), 6093–6099. Retrieved from https://mail.ejournal.itn.ac.id/index.php/jati/article/view/13967

Hayami, R., Soni, & Gunawan, I. (2022). Klasifikasi jamur menggunakan algoritma Naïve Bayes. Journal Computer Sciences, Informatics, Technology, 3(1), 28–33. https://doi.org/10.37859/coscitech.v3i1.3685

He, Y., Wu, C., & Fan, Y. (2024). Exploring the drivers of local government budget coordination: A random forest regression analysis. International Review of Economics & Finance, 93, 1104–1113. https://doi.org/10.1016/j.iref.2024.04.004

Husada, H. C., & Paramita, A. S. (2021). Analisis sentimen pada maskapai penerbangan di platform Twitter menggunakan algoritma Support Vector Machine (SVM. Teknika, 10(1), 18–26. https://doi.org/10.34148/teknika.v10i1.311

Insan, M. K., Hayati, U., & Nurdiawan, O. (2023). Analisis sentimen aplikasi Brimo pada ulasan pengguna di Google Play menggunakan algoritma Naive Bayes. Jurnal Teknik Informatika, 7(1), 478–483. Retrieved from https://mail.ejournal.itn.ac.id/index.php/jati/article/view/6373

Jasmarizal, J., Junadhi, Rahmaddeni, & Anam, M. K. (2024). Penerapan metode Support Vector Machine untuk analisis sentimen terhadap produk skincare. The Indonesian Journal of Computer Science, 13(1), 1438–1450. https://doi.org/10.33022/ijcs.v13i1.3654

Kaharudin, A., & Supriyadi, A. A. (2023). Analisis sentimen pada media sosial dengan teknik kecerdasan buatan Naïve Bayes: Kajian literatur review. Jurnal Ilmu Komputer Dan Sains, 2(6), 1642–1649. Retrieved from https://shorturl.asia/f8ugN

Kementrian Sekretariat Negara, R. (2025). Instruksi Presiden (Inpres) Nomor 1 Tahun 2025 tentang Efisiensi Belanja dalam Pelaksanaan Anggaran Pendapatan dan Belanja Negara dan Anggaran Pendapatan dan Belanja Daerah Tahun Anggaran 2025. Retrieved from https://peraturan.bpk.go.id/Details/313401/inpres-no-1-tahun-2025

Khoiruddin, M., Junaidi, A., & Saputra, W. A. (2022). Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network. Journal of Dinda: Data Science, Information Technology, and Data Analytics, 2(1), 37–45. Retrieved from https://journal.ittelkom-pwt.ac.id/index.php/dinda/article/view/341

Kusnadi, P. A., Padilah, T. N., & Sari, B. N. (2024). Analisis sentimen penerapan sistem pembayaran tol multi lane free flow menggunakan Naïve Bayes classifier. Jurnal Teknik Informatika, 8(4), 7398–7404. https://doi.org/10.36040/jati.v8i4.10232

Maharani, M. Z. (2024). Analisis sentimen positif terhadap Avoskin sebagai eco friendly brand di media sosial X dan TikTok. Filosofi: Publikasi Ilmu Komunikasi, Desain, Seni Budaya, 1(3), 125–140. https://doi.org/10.62383/filosofi.v1i3.169

Mas’ud, F., Jeluhur, H., Negat, K., Tefa, A., Uly, M., & Amtiran, M. (2025). Etika dalam media sosial antara kebebasan ekspresi dan tanggung jawab digital. Jimmi: Jurnal Ilmiah Mahasiswa Multidisiplin, 2(2), 235–246. https://doi.org/10.71153/jimmi.v2i2.289

Moraes, R., Valiati, J. F., & Neto, W. P. G. (2013). Document-level sentiment classification: An empirical comparison between SVM and ANN. Expert Systems with Applications, 40(2), 621–633. https://doi.org/10.1016/j.eswa.2012.07.059

Muhammadin, A., & Sobari, I. A. (2021). Analisis sentimen pada ulasan aplikasi Kredivo dengan algoritma SVM dan NBC. Reputasi Jurnal Rekayasa Perangkat Lunak, 2(2), 85–91. https://doi.org/10.31294/reputasi.v2i2.785

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes classifier dan confusion matrix pada analisis sentimen berbasis teks pada Twitter. Journal Sains Komputer Informatika, 5(2), 697–711. Retrieved from https://shorturl.asia/3L1aR

Pratama, M. M. H. R. (2025). Comparison of Support Vector Machine (SVM) and Naïve Bayes algorithm performance in analyzing Garuda bird design sentiment in IKN. Journal of Informatics and Telecommunication Engineering, 8(3), 1–8. https://doi.org/10.31289/jite.v8i3Spc.14830

Salman, & Ikbal, M. (2025). Analisis efektivitas kebijakan efisiensi anggaran: Ditinjau dari aspek ekonomi. Journal of Economics Development Research, 1(2), 68–72. https://doi.org/10.71094/joeder.v1i2.99

Saputra, I., Pambudi, R. S. A., Darono, H. E., Amsury, F., Fahdia, M. R., Ramadhan, B., & Ardiansyah, A. (2021). Analisis sentimen pengguna marketplace Bukalapak dan Tokopedia di Twitter menggunakan machine learning. Faktor Exacta, 13(4). https://doi.org/10.30998/faktorexacta.v13i4.7074

Suryati, E., Styawati, & Aldino, A. A. (2023). Analisis sentimen transportasi online menggunakan ekstraksi fitur model Word2Vec text embedding dan algoritma Support Vector Machine (SVM. Jurnal Teknologi Dan Sistem Informatika, 4(1), 96–106. Retrieved from https://shorturl.asia/gaUo5

Vincent, R., Maulana, I., & Komarudin, O. (2024). Perbandingan klasifikasi Naive Bayes dan Support Vector Machine dalam analisis sentimen dengan multiclass di Twitter. Jurnal Teknik Informatika, 7(4), 2496–2505. Retrieved from https://mail.ejournal.itn.ac.id/index.php/jati/article/view/7152

Zhang, J. (2024). Impact of an improved random forest-based financial management model on the effectiveness of corporate sustainability decisions. Systems and Soft Computing, 6, 200102. https://doi.org/10.1016/j.sasc.2024.200102

Zhu, Y., Tan, Y., Hua, Y., Wang, M., Zhang, G., & Zhang, J. (2010). Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. Journal of Digital Imaging, 23(1), 51–65. https://doi.org/10.1007/s10278-009-9185-9

Author Biographies

M Sahyudi, Universitas Teknokrat Indonesia

Author Origin : Indonesia

Sampurna Dadi Riskiono, Universitas Teknokrat Indonesia

Author Origin : Indonesia

Ryan Randy Suryono, Universitas Teknokrat Indonesia

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Sahyudi, M., Riskiono, S. D., & Suryono, R. R. (2025). Design and Implementation of a Public Sentiment Prediction Framework on Budget Efficiency Policy using Support Vector Machine, Naïve Bayes, and Random Forest. Jurnal Penelitian Pendidikan IPA, 11(12), 1370–1380. https://doi.org/10.29303/jppipa.v11i12.13561