Vol. 12 No. 1 (2026): In Progress
Open Access
Peer Reviewed

Landslide Susceptibility Zonation Based on Seismic Vulnerability Index and Subsurface Lithology Derived from Resistivity Values

Authors

Ira Jam’iyatul Qalbiyah , Adi Susilo , Eko Andi Suryo

DOI:

10.29303/jppipa.v12i1.13625

Published:

2026-01-25

Downloads

Abstract

This study aims to determine potential landslide-prone zones based on the seismic vulnerability index and subsurface lithology derived from electrical rock resistivity values. The research employs the microseismic method and the geoelectric resistivity method with a dipole–dipole configuration. Zones with high landslide susceptibility are identified at points exhibiting high values of the seismic vulnerability index. Based on data acquisition, the highest amplification factor was recorded at point D3 of 9.24, with a corresponding seismic vulnerability index of 24.57. Subsurface lithology analysis reveals an alluvium layer with a thickness of up to 25.00 meters overlying the bedrock. These datasets indicate that the alluvial soil is characterized by soft textures, incomplete consolidation, and low stability levels, rendering these specific points highly vulnerable to significant damage and landslide activity.

Keywords:

Alluvial Dipole-dipole Geoelectric Landslide susceptibility Seismic vulnerability index

References

Alonso-Pandavenes, O., Bernal, D., Torrijo, F. J., & Garzón-Roca, J. (2023). A Comparative Analysis for Defining the Sliding Surface and Internal Structure in an Active Landslide Using the HVSR Passive Geophysical Technique in Pujilí (Cotopaxi), Ecuador. Land Journal, 12(961). https://doi.org/10.3390/land12050961

Batu, B. K. (2025). Kecamatan Bumiaji dalam Angka (Vol. 23). BPS Kota Batu.

Chen, S., Lei, J., & Li, Y. (2023). Microtremor Recording Surveys to Study the Effects of Seasonally Frozen Soil on Site Response. Sensors Journal, 23(5573). https://doi.org/10.3390/s23125573

Chen, Y., Yuan, H., Chen, J., Pan, R., Deng, L., Huang, L., Zhang, M., & Yang, Q. (2025). Landslide Early Warning Model Based on Multi-Source Monitoring Data and Unsupervised Machine Learning. Engineering Applications of Artificial Intelligence, 164. https://doi.org/10.1016/j.engappai.2025.113156

Chungam, B., Vinitnantharat, S., & Wangyao, K. (2023). Evaluation of the Proper Electrode Spacing for ERI Surveys in Open Dumpsites Using Forward Modeling. 32(1), 535–545. https://doi.org/10.15244/pjoes/155969

Cintia, J., Br, D., Farduwin, A., & Styawan, Y. (2024). Tanah Di Tanjung Kemala Daerah Kabupaten Tanggamus. Jurnal Geosaintek, 10(2), 106–122. https://doi.org/10.12962/j25023659.v10i2.1619

Demulawa, M., & Daruwati, I. (2021). Analisis Frekuensi Natural Dan Potensi Amplifikasi Menggunakan Metode HVSR (Studi Kasus : Kampus 4 Universitas Negeri Gorontalo). Edu Research, 10(1), 59–63. https://doi.org/10.30606/jer.v10i1.1060

Fadilah, Simarmata, M., Farid, M., & Sukisno. (2025). Estimation of Sustained Groundwater Resource Potential by Analyzing Aquifer Depth Lithology in Selebar Subdistrict , Bengkulu. Jurnal Penelitian Pendidikan IPA, 11(11), 1143–1150. https://doi.org/10.29303/jppipa.v11i11.12799

Febriani, R., Juandi, M., & Islami, N. (2020). Interpretation Geothermal Energy Using Geoelectric Method with Dipole-Dipole in Pawan Village, Rokan Hulu Regency. Journal of Aceh Physics Society, 9(2), 31–36. https://doi.org/10.24815/jacps.v9i2.15304

Ferani, N. A. T., Yuniarto, H. P., & Widyawarman, D. (2019). Analisis Amplifikasi Dan Indeks Kerentanan Seismik Di Kawasan Fmipa Ugm. Jurnal Geosaintek, 5(2). https://doi.org/10.12962/j25023659.v5i2.5726

Gbadebo, A. M., Adeyemi, M. O., Adedeji, H. O., & Badejo, A. A. (2021). Geotechnical and Geomorphological Investigation of Rainfall Induced Shallow Landslide at Okeigbo, Ondo State, Southwestern Nigeria. Journal of African Earth Sciences, 178. https://doi.org/10.1016/j.jafrearsci.2021.104163

Guo, L., Chen, G., Gong, S., Sun, H., & Chantat, K. (2021). Analysis of Rainfall-Induced Landslide Using the Extended DDA by Incorporating Matric Suction. Computers and Geotechnics, 135. https://doi.org/10.1016/j.compgeo.2021.104145

Haerudin, N., Alami, F., & Rustadi. (2019). Mikroseismik, Mikrotremor dan Microearthquake dalam Ilmu Kebumian. Pusaka Media.

Handayani, W., & Sekarsari, N. H. (2024). Analisis Kerentanan Tanah di Selatan Zona Longsor Desa Kalongan, Kabupaten Semarang Menggunakan Metode HVSR. Jurnal Stasiun Geofisika Sleman, 2(2), 1–6. Retrieved from https://jurnal.stageofsleman.id/index.php/jsgs/article/view/22

Hijriah, Sila, A. A., Isdyanto, A., Ola, M. N. La, Hamdi, F., Masgode, M. B., Aryadi, A., Dzakir, L. O., Astari, M. D., & Buarlele, L. (2023). Dinamika dan Struktur Tahan Gempa. Tohar Media.

Himi, M., Anton, M., Sendr, A., Ercoli, M., Deidda, G. P., Urruela, A., & Casas, A. (2022). Application of Resistivity and Seismic Refraction Tomography for Landslide Stability Assessment in Vallcebre, Spanish Pyrenees. Remote Sensing Journal, 14(6333). https://doi.org/10.3390/rs14246333

Januarta, G. H., Yudistira, T., Tohari, A., & Fattah, E. I. (2020). Mikrozonasi Seismik Wilayah Padalarang, Kabupaten Bandung Barat Menggunakan Metode Horizontal To Vertical Spectral Ratio (HVSR). RISET Geologi Dan Pertambangan, 30(2), 143. https://doi.org/10.14203/risetgeotam2020.v30.1087

Karimah, K., Susilo, A., Suryo, E. A., Rofiq, A., & Hasan, M. F. R. (2022). Analysis of Potential Landslide Areas Using Geoelectric Methods of Resistivity in The Kastoba Lake, Bawean Island, Indonesia. Jurnal Penelitian Pendidikan IPA, 8(2), 660–665. https://doi.org/10.29303/jppipa.v8i2.1414

Krylov, A. A., Kulikov, M. E., Kovachev, S. A., Medvedev, I. P., Lobkovsky, L. I., & Semiletov, I. P. (2022). Peculiarities of the HVSR Method Application to Seismic Records Obtained by Ocean-Bottom Seismographs in the Arctic. Applied Sciences Journal, 12(9576). https://doi.org/10.3390/app12199576

Liao, M., Wen, H., & Yang, L. (2022). Identifying the essential conditioning factors of landslide susceptibility models under different grid resolutions using hybrid machine learning: A case of Wushan and Wuxi counties, China. Catena, 217. https://doi.org/10.1016/j.catena.2022.106428

Marfai, M. A., Mardiatno, D., & Sunarto. (2018). Penaksiran Multirisiko Bencana di Wilayah Kepesisiran Parangtritis: alam Era Teknologi Informasi dan Komunikasi. UGM Press.

Masitoh, F., Rusydi, A. N., & Pratama, I. D. (2019). Kajian hidrogeomorfologi pada DAS orde 0 (nol) di Dusun Brau Kota Batu. Jurnal Pendidikan Geografi: Kajian, Teori, Dan Praktik Dalam Bidang Pendidikan Dan Ilmu Geografi, 24(2). https://doi.org/10.17977/um017v24i22019p073

Moradi, S., Heinze, T., Budler, J., Gunatilake, T., Kemna, A., & Huisman, J. A. (2021). Combining Site Characterization, Monitoring and Hydromechanical Modeling for Assessing Slope Stability. Land Journal, 10(423), 1–23. https://doi.org/10.3390/land10040423

Novianti, D. (2019). Implementasi Teori “Cracked Soil” Pada Identifikasi Kelongsoran. Jakad Media Publishing.

Ofterdinger, U., MacDonald, A. M., Comte, J. C., & Young, M. E. (2019). Groundwater in Fractured Bedrock Environments: Managing Catchment and Subsurface Resources. Geological Society of London.

Pourghasemi, H. R., Gayen, A., Edalat, M., Zarafshar, M., & Tiefenbacher, J. P. (2020). Is Multi-Hazard Mapping Effective in Assessing Natural Hazards and Integrated Watershed Management. Geoscience Frontiers, 11(4), 1203–1217. https://doi.org/10.1016/j.gsf.2019.10.008

Rananda, E., Prabowo, L., Prabowo, A. P., Rasimeng, S., & Yogi, I. B. S. (2020). Analysis and Zonation of Land Vulnerability Areas in Pekon Karangrejo Ulubelu Tanggamus Using Microzonation Method. Jurnal Geofisika, 18(1), 14. https://doi.org/10.36435/jgf.v18i1.420

Rashid, M., Kamran, M., Zeb, M. J., Islam, I., Janjuhah, H. T., & Kontakiotis, G. (2023). Assessment of Potential Potable Water Reserves in Islamabad , Pakistan Using Vertical Electrical Sounding Technique. Hydrology Journal, 10(217). https://doi.org/10.3390/hydrology10120217

Rif’ah, K. D., Jamil, A. M. M., Suwito, S., & Kurniawati, D. (2024). Pemetaan Tingkat Kerawanan Bencana Tanah Longsor Menggunakan Metode Weighted Overlay di Kecamatan Poncokusumo Kabupaten Malang. Journal of Geographical Sciences and Education, 02(4). https://doi.org/10.69606/geography.v2i4.137

Risa, I. N., Maison, & Dewi, I. K. (2023). Analisis Kerentanan Tanah Berdasarkan Pengukuran Mikrotremor Di Desa Jati Mulyo, Tanjung Jabung Timur. Jurnal Geofisika Eksplorasi, 09(01). https://doi.org/10.23960/jge.v9i1.236

Rizzo, E., Giampaolo, V., Capozzoli, L., De Martino, G., Romano, G., Santilano, A., & Manzella, A. (2022). 3D deep geoelectrical exploration in the Larderello geothermal sites (Italy). Physics of the Earth and Planetary Interiors, 329–330. https://doi.org/10.1016/j.pepi.2022.106906

Santosa, S., & Suwarti, T. (1992). Peta Geologi Lembar Malang, Jawa. Pusat Penelitian dan Pengembangan Geologi.

Sasongko, D. P., Yuliyanto, G., & Zaenal, A. (2020). Karakterisasi Daerah Rawan Gerakan Tanah Di Lapangan Pandanmurti Desa Candigaron Kecamatan Sumowono Kabupaten Semarang Dengan Metode Mikrotremor. Jurnal Pembangunan Wilayah Dan Kota, 16(2), 136–143. https://doi.org/10.14710/pwk.v16i2.26401

Stark, T. D., Estes, K. D., Silver, R. C., Holman, E. A., Leshchinsky, B. A., & Vahedifard, F. (2025). Objective versus Subjective Landslide Risk: A Case of Cache Creek Landslide in California. International Journal of Disaster Risk Reduction. https://doi.org/10.1016/j.ijdrr.2025.105910

Susilo, A., & Wiyono, S. H. (2012). Frequency Analysis and Seismic Vulnerability Index by Using Nakamura Methods at a New Artery Way in Porong,Sidoarjo, Indonesia. International Journal of Applied Physics and Mathematics, 2(4), 227–230. https://doi.org/10.7763/IJAPM.2012.V2.97

Susilo, A., Zulaikah, S., Fauzi, A., Ilham, Ma’muri, Wirawan, K., Haniyyah, S., Zarkoni, A., Persada, Y. D., Bery, A. A., & Hasan, M. F. R. (2026). Seismic site characterization of Malang Regency (Indonesia) using HVSR inversion. Kuwait Journal of Science, 53(1), 100486. https://doi.org/10.1016/j.kjs.2025.100486

Sutasoma, M., Susilo, A., & Suryo, E. A. (2017). Penyelidikan Zona Longsor dengan Metode Resistivitas dan Analisis Stabilitas Lereng untuk Mitigasi Bencana Tanah Longsor. Indonesian Journal of Applied Physics, 7(1), 35. https://doi.org/10.13057/ijap.v7i1.8784

Syamsuddin, E., & Assegaf, M. A. H. (2021). Dasar-Dasar Akuisisi Data MASW dan Mikrotremor. Unhas Press.

Yue, M., & Zhou, G. (2024). Assessment Rainfall-Induced Landslides Using Arbitrary Dipole – Dipole Direct Resistivity Configuration. Applied Sciences Journal, 14(9096). https://doi.org/10.3390/app14199096

Yuliawati, W. S., Rasimeng, S., & Karyanto. (2019). Pengolahan Data Mikrotremor Berdasarkan Metode Hvsr Dengan Menggunakan Matlab. Jurnal Geofisika Ekplorasi, 5(1), 45–59. https://doi.org/10.23960/jge.v5il.22

Zevallos, A., Torres, J., Segura, C., & Carrasco, J. (2025). Geoelectrical Characterization of Sedimentary Landslides in the Laguna Del Amor Area, Chota-Cajamarca (Peru). Applied Sciences Journal, 15(2327). https://doi.org/10.3390/app15052327

Zhang, B., Zhang, M., Liu, H., Sun, P., Feng, L., Li, T., & Wang, Y. (2022). Water Flow Characteristics Controlled by Slope Morphology under Different Rainfall Capacities and Its Implications for Slope Failure Patterns. Water Journal, 14(1271). https://doi.org/10.3390/w14081271

Author Biographies

Ira Jam’iyatul Qalbiyah, Brawijaya University

Author Origin : Indonesia

Adi Susilo, Brawijaya University

Author Origin : Indonesia

Eko Andi Suryo, Brawijaya University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Qalbiyah, I. J., Susilo, A., & Suryo, E. A. (2026). Landslide Susceptibility Zonation Based on Seismic Vulnerability Index and Subsurface Lithology Derived from Resistivity Values. Jurnal Penelitian Pendidikan IPA, 12(1), 19–27. https://doi.org/10.29303/jppipa.v12i1.13625