The Effectiveness and Durability of Organic Olive Oil, Bengkoang, and Butterfly Pea Flower Soap for Dry Skin
DOI:
10.29303/jppipa.v11i12.13632Published:
2025-12-25Downloads
Abstract
The skin is the outermost part of the body, which is exposed to all types of pollutants from the air, including microbes. Therefore, it requires an effective cleanser to protect it. However, the cleanser must also be able to maintain skin moisture. The selection of ingredients used for soap is olive oil, jicama, and butterfly pea flowers. These ingredients contain oleic acid, vitamin C, and flavonoids, which are effective in moisturizing, antibacterial, and antioxidants. The purpose of this study was to determine the effectiveness of soap for cleaning, protecting, and moisturizing, to determine the durability by examining the soap's pH, and its antibacterial effectiveness. The methodology used was an experimental design with a one-group pretest and posttest design, which was analyzed quantitatively descriptively. Data collection used experiments, questionnaires, and observation sheets. Observations were in the form of measuring moisture levels using a digital skin analyzer. The results of the T test (paired sample t-test) were t = 11.625, while the T table was 2.04 with a Sig = 0.000 < 0.05 (2 tails). Then the calculated T > T table, so H1 was accepted. The conclusion is that there is an effect of using organic soap from olive oil, bengkoang, and butterfly pea flowers, with good durability and a stable pH, while microbiological tests on Escherichia coli bacteria were not as good as eco enzyme soap.
Keywords:
Bengkoang Buterfly pea Olive oil Organic soapReferences
Allaqaband, S., Dar, A. H., Patel, U., Kumar, N., Nayik, G. A., Khan, S. A., Ansari, M. J., Alabdallah, N. M., Kumar, P., Pandey, V. K., Kovács, B., & Shaikh, A. M. (2022). Utilization of Fruit Seed-Based Bioactive Compounds for Formulating the Nutraceuticals and Functional Food: A Review. Frontiers in Nutrition, 9, 902554. https://doi.org/10.3389/fnut.2022.902554 DOI: https://doi.org/10.3389/fnut.2022.902554
Amin, R., Völzer, B., Genedy-Kalyoncu, M. E., Blume-Peytavi, U., & Kottner, J. (2023). The Prevalence and Severity of Dry Skin and Related Skin Care in Older Adult Residents in Institutional Long-Term Care: A Cross-Sectional Study. Geriatric Nursing, 54, 331–340. https://doi.org/10.1016/j.gerinurse.2023.10.032 DOI: https://doi.org/10.1016/j.gerinurse.2023.10.032
Brooks, S. G., Mahmoud, R. H., Lin, R. R., Fluhr, J. W., & Yosipovitch, G. (2025). The Skin Acid Mantle: An Update on Skin pH. Journal of Investigative Dermatology, 145(3), 509–521. https://doi.org/10.1016/j.jid.2024.07.009 DOI: https://doi.org/10.1016/j.jid.2024.07.009
Cela, E. M., Paz, M. L., Leoni, J., & Maglio, D. H. G. (2018). Immune System Modulation Produced by Ultraviolet Radiation. In S. S. Athari (Ed.), Immunoregulatory Aspects of Immunotherapy. InTech. https://doi.org/10.5772/intechopen.75450 DOI: https://doi.org/10.5772/intechopen.75450
Cho, E.-C., Ahn, S., Shin, K.-O., Lee, J. B., Hwang, H.-J., & Choi, Y.-J. (2024). Protective Effect of Red Light-Emitting Diode Against UV-B Radiation-Induced Skin Damage in SKH:HR-2 Hairless Mice. Current Issues in Molecular Biology, 46(6), 5655–5667. https://doi.org/10.3390/cimb46060338 DOI: https://doi.org/10.3390/cimb46060338
Damodaran, A., & Nair, N. (2023). Skin Pigmentation and Cosmetic Considerations for Even Skin Tone. In S. Aghaei (Ed.), Pigmentation Disorders—Etiology and Recent Advances in Treatments. IntechOpen. https://doi.org/10.5772/intechopen.108693 DOI: https://doi.org/10.5772/intechopen.108693
Fluhr, J. W., Moore, D. J., Lane, M. E., Lachmann, N., & Rawlings, A. V. (2024). Epidermal Barrier Function in Dry, Flaky and Sensitive Skin: A Narrative Review. Journal of the European Academy of Dermatology and Venereology, 38(5), 812–820. https://doi.org/10.1111/jdv.19745 DOI: https://doi.org/10.1111/jdv.19745
Guo, X., He, L., Sun, J., Ye, H., Yin, C., Zhang, W., Han, H., & Jin, W. (2024). Exploring the Potential of Anthocyanins for Repairing Photoaged Skin: A Comprehensive Review. Foods, 13(21), 3506. https://doi.org/10.3390/foods13213506 DOI: https://doi.org/10.3390/foods13213506
Hawkins, S., Dasgupta, B. R., & Ananthapadmanabhan, K. P. (2021). Role of pH in Skin Cleansing. International Journal of Cosmetic Science, 43(4), 474–483. https://doi.org/10.1111/ics.12721 DOI: https://doi.org/10.1111/ics.12721
Hussen, N. H. A., Abdulla, S. K., Ali, N. M., Ahmed, V. A., Hasan, A. H., & Qadir, E. E. (2025). Role of Antioxidants in Skin Aging and the Molecular Mechanism of ROS: A Comprehensive Review. Aspects of Molecular Medicine, 5, 100063. https://doi.org/10.1016/j.amolm.2025.100063 DOI: https://doi.org/10.1016/j.amolm.2025.100063
Iriany, I., Sukeksi, L., Diana, V., & Taslim, T. (2020). Preparation and Characterization of Coconut Oil Based Soap with Kaolin as Filler. Journal of Physics: Conference Series, 1542(1), 012046. https://doi.org/10.1088/1742-6596/1542/1/012046 DOI: https://doi.org/10.1088/1742-6596/1542/1/012046
Janssens-Böcker, C., Doberenz, C., Monteiro, M., & Ferreira, M. D. O. (2025). Influence of Cosmetic Skincare Products with pH < 5 on the Skin Microbiome: A Randomized Clinical Evaluation. Dermatology and Therapy, 15(1), 141–159. https://doi.org/10.1007/s13555-024-01321-x DOI: https://doi.org/10.1007/s13555-024-01321-x
Karkoszka, M., Rok, J., & Wrześniok, D. (2024). Melanin Biopolymers in Pharmacology and Medicine—Skin Pigmentation Disorders, Implications for Drug Action, Adverse Effects and Therapy. Pharmaceuticals, 17(4), 521. https://doi.org/10.3390/ph17040521 DOI: https://doi.org/10.3390/ph17040521
Kim, Y. C., Choi, S. Y., & Park, E. Y. (2015). Anti-Melanogenic Effects of Black, Green, and White Tea Extracts on Immortalized Melanocytes. Journal of Veterinary Science, 16(2), 135. https://doi.org/10.4142/jvs.2015.16.2.135 DOI: https://doi.org/10.4142/jvs.2015.16.2.135
Kusumawati, D. E., Usman, W. F., Lestari, A. P., Luthfiah, N. T., & Triwahyuni, M. (2023). Education on the Use of Butterfly Pea Flowers (Clitoria ternatea) as an Antibacterial Agent in Handwashing Soap for Students at SDN Pedurungan Kidul 04 Semarang. Community Empowerment, 8(10), 1623–1628. https://doi.org/10.31603/ce.9783 DOI: https://doi.org/10.31603/ce.9783
Labdelli, A., Tahirine, M., Foughalia, A., Zemour, K., Cerny, M., Adda, A., Simon, V., & Merah, O. (2022). Effect of Ecotype and Environment on Oil Content, Fatty Acid, and Sterol Composition of Seed, Kernel, and Epicarp of the Atlas Pistachio. Agronomy, 12(12), 3200. https://doi.org/10.3390/agronomy12123200 DOI: https://doi.org/10.3390/agronomy12123200
Lee, K. E., Bharadwaj, S., Sahoo, A. K., Yadava, U., & Kang, S. G. (2021). Determination of Tyrosinase-Cyanidin-3-O-Glucoside and (−/+)-Catechin Binding Modes Reveal Mechanistic Differences in Tyrosinase Inhibition. Scientific Reports, 11(1), 24494. https://doi.org/10.1038/s41598-021-03569-1 DOI: https://doi.org/10.1038/s41598-021-03569-1
Lee, S. Y., Baek, N., & Nam, T. (2016). Natural, Semisynthetic and Synthetic Tyrosinase Inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1), 1–13. https://doi.org/10.3109/14756366.2015.1004058 DOI: https://doi.org/10.3109/14756366.2015.1004058
Lee, Y., Song, H.-Y., & Byun, E.-B. (2025). Anti-Melanogenic Effects of Hydroxyethyl Chrysin Through the Inhibition of Tyrosinase Activity: In Vitro and In Silico Approaches. Heliyon, 11(2), e41718. https://doi.org/10.1016/j.heliyon.2025.e41718 DOI: https://doi.org/10.1016/j.heliyon.2025.e41718
Li, X., Xin, Y., Mo, Y., Marozik, P., He, T., & Guo, H. (2022). The Bioavailability and Biological Activities of Phytosterols as Modulators of Cholesterol Metabolism. Molecules, 27(2), 523. https://doi.org/10.3390/molecules27020523 DOI: https://doi.org/10.3390/molecules27020523
Lubis, N., Damayanti, R., & Wardani, S. (2025). Antimicrobial Activity of Eco-enzymes with Various Dilutions as a Natural Disinfectant. Jurnal Penelitian Pendidikan IPA, 11(5), 506–513. https://doi.org/10.29303/jppipa.v11i5.11052 DOI: https://doi.org/10.29303/jppipa.v11i5.11052
Lukić, M., Pantelić, I., & Savić, S. D. (2021). Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics, 8(3), 69. https://doi.org/10.3390/cosmetics8030069 DOI: https://doi.org/10.3390/cosmetics8030069
Martín, J., Kuskoski, E. M., Navas, M. J., & Asuero, A. G. (2017). Antioxidant Capacity of Anthocyanin Pigments. In G. C. Justino (Ed.), Flavonoids—From Biosynthesis to Human Health. InTech. https://doi.org/10.5772/67718 DOI: https://doi.org/10.5772/67718
Maulani, B. I. G., Rasmi, D. A. C., & Zulkifli, L. (2019). Isolation and Characterization of Endophytic Bacteria from Mangrove Rhizophora mucronata Lam. and Antibacterial Activity Test Against Some Pathogenic Bacteria. Journal of Physics: Conference Series, 1402(3), 033038. https://doi.org/10.1088/1742-6596/1402/3/033038 DOI: https://doi.org/10.1088/1742-6596/1402/3/033038
Namiecińska, E., Jaszczak, J., Hikisz, P., Daśko, M., Woźniczka, M., & Budzisz, E. (2025). Evaluation of Tyrosinase Inhibitory Activity of Carbathioamidopyrazoles and Their Potential Application in Cosmetic Products and Melanoma Treatment. International Journal of Molecular Sciences, 26(8), 3882. https://doi.org/10.3390/ijms26083882 DOI: https://doi.org/10.3390/ijms26083882
Nghiem, D. X., Kazimi, N., Clydesdale, G., Ananthaswamy, H. N., Kripke, M. L., & Ullrich, S. E. (2001). Ultraviolet A Radiation Suppresses an Established Immune Response: Implications for Sunscreen Design. Journal of Investigative Dermatology, 117(5), 1193–1199. https://doi.org/10.1046/j.0022-202x.2001.01503.x DOI: https://doi.org/10.1046/j.0022-202x.2001.01503.x
Paternina-Ricardo, S., Castillo, M. D. D., Sánchez-Martin, V., García-Espiñeira, M., Cervantes- Ceballos, L., Arroyo–Salgado, B., & Tejeda- Benítez, L. (2025). Exploring the Efficacy of the Biological Properties of Persea americana Mill Seed: Useful Studies and Perspectives in Functional Foods. Journal of Agriculture and Food Research, 24, 102428. https://doi.org/10.1016/j.jafr.2025.102428 DOI: https://doi.org/10.1016/j.jafr.2025.102428
Piquero‐Casals, J., Morgado‐Carrasco, D., Rozas‐Muñoz, E., Mir‐Bonafé, J. F., Trullàs, C., Jourdan, E., Piquero‐Martin, J., Zouboulis, C. C., & Krutmann, J. (2023). Sun Exposure, a Relevant Exposome Factor in Acne Patients and How Photoprotection Can Improve Outcomes. Journal of Cosmetic Dermatology, 22(6), 1919–1928. https://doi.org/10.1111/jocd.15726 DOI: https://doi.org/10.1111/jocd.15726
Putri, L. A. M., & Devientasaria, C. (2023). Antibacterial Test of Telang Flower Extract (Clitorea ternatea L.) Against Pseudomonas aeruginosa. Strada Journal of Pharmacy, 5(2), 68–72. https://doi.org/10.30994/sjp.v5i2.96 DOI: https://doi.org/10.30994/sjp.v5i2.96
Qian, W., Liu, W., Zhu, D., Cao, Y., Tang, A., Gong, G., & Su, H. (2020). Natural Skin‑Whitening Compounds for the Treatment of Melanogenesis (Review). Experimental and Therapeutic Medicine, 20(1), 173–185. https://doi.org/10.3892/etm.2020.8687 DOI: https://doi.org/10.3892/etm.2020.8687
Sawant, S. S., Park, H.-Y., Sim, E.-Y., Kim, H.-S., & Choi, H.-S. (2025). Microbial Fermentation in Food: Impact on Functional Properties and Nutritional Enhancement—A Review of Recent Developments. Fermentation, 11(1), 15. https://doi.org/10.3390/fermentation11010015 DOI: https://doi.org/10.3390/fermentation11010015
Sayeed, M. B., Karim, S., Sharmin, T., & Morshed, M. (2016). Critical Analysis on Characterization, Systemic Effect, and Therapeutic Potential of Beta-Sitosterol: A Plant-Derived Orphan Phytosterol. Medicines, 3(4), 29. https://doi.org/10.3390/medicines3040029 DOI: https://doi.org/10.3390/medicines3040029
Slominski, R. M., Chen, J. Y., Raman, C., & Slominski, A. T. (2024). Photo-Neuro-Immuno-Endocrinology: How the Ultraviolet Radiation Regulates the Body, Brain, and Immune System. Proceedings of the National Academy of Sciences, 121(14), e2308374121. https://doi.org/10.1073/pnas.2308374121 DOI: https://doi.org/10.1073/pnas.2308374121
Smith, M. L., O’Neill, C. A., Dickinson, M. R., Chavan, B., & McBain, A. J. (2023). Exploring Associations between Skin, the Dermal Microbiome, and Ultraviolet Radiation: Advancing Possibilities for Next-Generation Sunscreens. Frontiers in Microbiomes, 2, 1102315. https://doi.org/10.3389/frmbi.2023.1102315 DOI: https://doi.org/10.3389/frmbi.2023.1102315
Solihat, N. N., Hidayat, A. F., Ilyas, R. A., Thiagamani, S. M. K., Azeele, N. I. W., Sari, F. P., Ismayati, M., Bakshi, M. I., Garba, Z. N., Hussin, M. H., Restu, W. K., Syafii, W., Ariyanta, H. A., & Fatriasari, W. (2024). Recent Antibacterial Agents from Biomass Derivatives: Characteristics and Applications. Journal of Bioresources and Bioproducts, 9(3), 283–309. https://doi.org/10.1016/j.jobab.2024.02.002 DOI: https://doi.org/10.1016/j.jobab.2024.02.002
Tallei, T. E., Fatimawali, F., Niode, N. J., Alsaihati, W. M., Salaki, C. L., Alissa, M., Kamagi, M., & Rabaan, A. A. (2023). Antibacterial and Antioxidant Activity of Ecoenzyme Solution Prepared from Papaya, Pineapple, and Kasturi Orange Fruits: Experimental and Molecular Docking Studies. Journal of Food Processing and Preservation, 2023, 1–11. https://doi.org/10.1155/2023/5826420 DOI: https://doi.org/10.1155/2023/5826420
Tang, X., Yang, T., Yu, D., Xiong, H., & Zhang, S. (2024). Current Insights and Future Perspectives of Ultraviolet Radiation (UV) Exposure: Friends and Foes to the Skin and Beyond the Skin. Environment International, 185, 108535. https://doi.org/10.1016/j.envint.2024.108535 DOI: https://doi.org/10.1016/j.envint.2024.108535
Tanwar, R., Panghal, A., Chaudhary, G., Kumari, A., & Chhikara, N. (2023). Nutritional, Phytochemical and Functional Potential of Sorghum: A Review. Food Chemistry Advances, 3, 100501. https://doi.org/10.1016/j.focha.2023.100501 DOI: https://doi.org/10.1016/j.focha.2023.100501
Tsai, J., & Chien, A. L. (2022). Photoprotection for Skin of Color. American Journal of Clinical Dermatology, 23(2), 195–205. https://doi.org/10.1007/s40257-021-00670-z DOI: https://doi.org/10.1007/s40257-021-00670-z
Widiani, N., Novitasari, A., Winandari, O. P., & Saputri, D. A. (2024). Formulation and Antibacterial Activity Testing of Eco-Soap Based on Sodium Lauryl Sulfate Surfactant. Biology, Medicine, & Natural Product Chemistry, 13(1), 121–125. https://doi.org/10.14421/biomedich.2024.131.121-125 DOI: https://doi.org/10.14421/biomedich.2024.131.121-125
License
Copyright (c) 2025 R. A Mukti, F. H Fatmasari, I Nuraini, U. M. Rochmawati, K. A. Trisna Dewi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






