Adaptive Management Model for the Development of AI-Based Science Learning Media and IoT in The Society 5.0 Era: A Literature Study
DOI:
10.29303/jppipa.v11i12.13819Published:
2025-12-31Downloads
Abstract
The transition from Industry 4.0 to Society 5.0 has transformed educational paradigms, particularly in science education, necessitating adaptive management approaches to integrating advanced technologies. This literature study examines the adaptive management model for developing AI and IoT-based science learning media in the Society 5.0 era. Through systematic analysis of 10 peer-reviewed articles from 2020–2025 sourced from Google Scholar, Scopus, and ERIC databases, this research identifies critical components, challenges, and opportunities in technology-integrated science education. Findings reveal that AI enables personalized science learning through adaptive algorithms and data analytics, while IoT facilitates real-time experiential learning through connected laboratory equipment and environmental sensors. The proposed adaptive management model integrates technological infrastructure, teacher competency development, curriculum alignment, and ethical considerations to create responsive science learning ecosystems. Key challenges include digital divides, infrastructure limitations, and balancing technology with humanistic educational values. This model offers significant implications for enhancing scientific literacy, experiential learning, and 21st-century skills development in science classrooms. The research contributes a conceptual framework for educational stakeholders to implement adaptive, technology-enhanced science education aligned with Society 5.0 principles.
Keywords:
Adaptive management AI-Based Learning Media Educational technology IoT Learning Media Science education Society 5.0References
Abyaneh, A. G., Ghanbari, H., Mohammadi, E., Amirsahami, A., & Khakbazan, M. (2025). An analytical review of artificial intelligence applications in sustainable supply chains. Supply Chain Analytics, 12, 100173. https://doi.org/10.1016/j.sca.2025.100173 DOI: https://doi.org/10.1016/j.sca.2025.100173
Adler, I., Montal, Y., & Soffer-Vital, S. (2025). Bridging culture and technology: Supporting teachers in developing culturally responsive pedagogies for technology integration. Computers in Human Behavior Reports, 20, 100840. https://doi.org/10.1016/j.chbr.2025.100840 DOI: https://doi.org/10.1016/j.chbr.2025.100840
Alazmi, M., Alshammari, M., Alabbad, D. A., Abosaq, H. A., Hegazy, O., Alalayah, K. M., Mustafa, N. O. A., Zamani, A. S., & Hussain, S. (2025). An IoT-Enabled Hybrid Deep Q-Learning and Elman Neural Network Framework for Proactive Crop Healthcare in the Agriculture Sector. Internet of Things, 33, 101700. https://doi.org/10.1016/j.iot.2025.101700 DOI: https://doi.org/10.1016/j.iot.2025.101700
Albrecht, V., Müller-Reif, J., Nordmann, T. M., Mund, A., Schweizer, L., Geyer, P. E., Niu, L., Wang, J., Post, F., Oeller, M., Metousis, A., Bach Nielsen, A., Steger, M., Wewer Albrechtsen, N. J., & Mann, M. (2024). Bridging the Gap From Proteomics Technology to Clinical Application: Highlights From the 68th Benzon Foundation Symposium. Molecular & Cellular Proteomics, 23(12), 100877. https://doi.org/10.1016/j.mcpro.2024.100877 DOI: https://doi.org/10.1016/j.mcpro.2024.100877
Alshuhail, A., Alshahrani, A., Mahgoub, H., Ghaleb, M., Darem, A. A., Aljehane, N. O., Alotaibi, M., & Alzahrani, F. (2025). Machine edge-aware IoT framework for real-time health monitoring: Sensor fusion and AI-driven emergency response in decentralized networks. Alexandria Engineering Journal, 129, 1349–1361. https://doi.org/10.1016/j.aej.2025.08.030 DOI: https://doi.org/10.1016/j.aej.2025.08.030
Alwakeel, A. M. (2025). Enhancing IoT performance in wireless and mobile networks through named data networking (NDN) and edge computing integration. Computer Networks, 264, 111267. https://doi.org/10.1016/j.comnet.2025.111267 DOI: https://doi.org/10.1016/j.comnet.2025.111267
Antomarioni, S., Fani, V., Bandinelli, R., Ciarapica, F. E., & Bevilacqua, M. (2025). Toward Quality 5.0: Integrating Industry 4.0, Human-Centricity, and Quality Management. IFAC-PapersOnLine, 59(10), 1414–1419. https://doi.org/10.1016/j.ifacol.2025.09.238 DOI: https://doi.org/10.1016/j.ifacol.2025.09.238
Azarian, M., Yu, H., Shiferaw, A. T., & Stevik, T. K. (2023). Do we perform systematic literature review right? A scientific mapping and methodological assessment. Logistics, 7(4), 89. https://doi.org/10.3390/logistics7040089 DOI: https://doi.org/10.3390/logistics7040089
Bramer, W. M., De Jonge, G. B., Rethlefsen, M. L., Mast, F., & Kleijnen, J. (2018). A systematic approach to searching: an efficient and complete method to develop literature searches. Journal of the Medical Library Association: JMLA, 106(4), 531. https://doi.org/10.5195/jmla.2018.283 DOI: https://doi.org/10.5195/jmla.2018.283
Casas, P., & Palomes, X. (2025). Building Society 5.0: A foundation for decision-making based on open models and digital twins. Advanced Engineering Informatics, 69, 103970. https://doi.org/10.1016/j.aei.2025.103970 DOI: https://doi.org/10.1016/j.aei.2025.103970
Chen, Z., & Dai, X. (2024). Utilizing AI and IoT technologies for identifying risk factors in sports. Heliyon, 10(11), 32477. https://doi.org/10.1016/j.heliyon.2024.e32477 DOI: https://doi.org/10.1016/j.heliyon.2024.e32477
Chookaew, S., Kitcharoen, P., Howimanporn, S., & Panjaburee, P. (2024). Fostering student competencies and perceptions through artificial intelligence of things educational platform. Computers and Education: Artificial Intelligence, 7, 100308. https://doi.org/10.1016/j.caeai.2024.100308 DOI: https://doi.org/10.1016/j.caeai.2024.100308
Eriksson, K. M., Olsson, A. K., & Carlsson, L. (2024). Beyond lean production practices and Industry 4.0 technologies toward the human-centric Industry 5.0. Technological Sustainability, 3(3), 286–308. https://doi.org/10.1108/TECHS-11-2023-0049 DOI: https://doi.org/10.1108/TECHS-11-2023-0049
Feng, S., Zhang, H., & Gašević, D. (2025). Mapping the evolution of AI in education: Toward a co-adaptive and human-centered paradigm. Computers and Education: Artificial Intelligence, 9, 100513. https://doi.org/10.1016/j.caeai.2025.100513 DOI: https://doi.org/10.1016/j.caeai.2025.100513
Firoozi, A. A., Firoozi, A. A., & Maghami, M. R. (2025). Transforming civil engineering: The role of nanotechnology and AI in advancing material durability and structural health monitoring. Case Studies in Construction Materials, 23, 5063. https://doi.org/10.1016/j.cscm.2025.e05063 DOI: https://doi.org/10.1016/j.cscm.2025.e05063
Gahar, R. M., Gorchene, B., Hidri, A., Arfaoui, O., & Hidri, M. S. (2025). Building Intelligent Educational Agents: A Scalable LLM-Based Framework for Assessment Generation. Procedia Computer Science, 270, 4075–4084. https://doi.org/10.1016/j.procs.2025.09.532 DOI: https://doi.org/10.1016/j.procs.2025.09.532
Gasparyan, A. Y., Yessirkepov, M., Voronov, A. A., Trukhachev, V. I., Kostyukova, E. I., Gerasimov, A. N., & Kitas, G. D. (2016). Specialist bibliographic databases. Journal of Korean Medical Science, 31(5), 660–673. https://doi.org/10.3346/jkms.2016.31.5.660 DOI: https://doi.org/10.3346/jkms.2016.31.5.660
Gellert, B., Budde, F., Buße, D., & Orth, R. (2024). Adapting Business Models for Circular Economy: Practical Step-by-Step Methodology and Case Study Analysis from a German SME. Procedia CIRP, 135, 338–343. https://doi.org/10.1016/j.procir.2024.12.028 DOI: https://doi.org/10.1016/j.procir.2024.12.028
Hachoumi, N., Eddabbah, M., & El adib, A. R. (2025). Enhancing teaching and learning in health sciences education through the integration of Bloom’s taxonomy and artificial intelligence. Informatics and Health, 2(2), 130–136. https://doi.org/10.1016/j.infoh.2025.05.002 DOI: https://doi.org/10.1016/j.infoh.2025.05.002
Halidu, O. B., Awuah-Gyawu, M., Otchere Fianko, A., Gyamfi, B. A., & Asongu, S. A. (2025). Corporate governance and circular supply chains: Synergizing eco-adaptive organizational culture, leadership eco-innovation willingness, and perceived urgency for circularity. Journal of Environmental Management, 392, 126689. https://doi.org/10.1016/j.jenvman.2025.126689 DOI: https://doi.org/10.1016/j.jenvman.2025.126689
Hossain, M., Ahmad, F., Aleem, M., Bask, A., & Rajahonka, M. (2025). Emerging technologies in sharing economy: A review and research agenda. Technological Forecasting and Social Change, 218, 124218. https://doi.org/10.1016/j.techfore.2025.124218 DOI: https://doi.org/10.1016/j.techfore.2025.124218
Hu, Z. (2025). A method for generating personalized learning content based on AIGC. Sustainable Futures, 10, 101331. https://doi.org/10.1016/j.sftr.2025.101331 DOI: https://doi.org/10.1016/j.sftr.2025.101331
Hussain, Z., Mohammad, S. I., Vasudevan, A., Awad, A., & Bansal, R. (2025). Exploring the effect of industry 5.0 human-centric sustainability and green knowledge automation in enhancing green process adaptability: The mediating role of sustainable human-tech interaction. Journal of Cleaner Production, 537, 147240. https://doi.org/10.1016/j.jclepro.2025.147240 DOI: https://doi.org/10.1016/j.jclepro.2025.147240
Ishtiaq, W., Zannat, A., Shahariar Parvez, A. H. M., Hossain, A., Md., H. K., M., & Masud Tarek, M. (2025). CST-AFNet: A dual attention-based deep learning framework for intrusion detection in IoT networks. Array, 27, 100501. https://doi.org/10.1016/j.array.2025.100501 DOI: https://doi.org/10.1016/j.array.2025.100501
Kitchenham, B., Budgen, D., Brereton, P., Turner, M., Charters, S., & Linkman, S. (2007). Large-scale software engineering questions--expert opinion or empirical evidence? IET Software, 1(5), 161–171. https://doi.org/10.1049/iet-sen:20060052 DOI: https://doi.org/10.1049/iet-sen:20060052
Koch, V., Tomasevic, D., Pacher, C., & Zunk, B. M. (2025). Preparing Students for Industry 5.0: Evaluating the Industrial Engineering and Management Education. Procedia Computer Science, 253, 2219–2228. https://doi.org/10.1016/j.procs.2025.01.282 DOI: https://doi.org/10.1016/j.procs.2025.01.282
Kumar, D., Bakariya, B., Verma, C., & Illes, Z. (2025). LivXAI-Net: An explainable AI framework for liver disease diagnosis with IoT-based real-time monitoring support. Computer Methods and Programs in Biomedicine, 270, 108950. https://doi.org/10.1016/j.cmpb.2025.108950 DOI: https://doi.org/10.1016/j.cmpb.2025.108950
Luger, L., Koch, V., Pacher, C., & Zunk, B. M. (2025). Investigating the Influence of the Transition from Industry 4.0 to 5.0 on the Education and Career Development of Industrial Engineers and Managers. Procedia Computer Science, 253, 1750–1759. https://doi.org/10.1016/j.procs.2025.01.237 DOI: https://doi.org/10.1016/j.procs.2025.01.237
Mahajan, R. A., Dey, R., Khan, M., Su’ud, M. M., Alam, M. M., & Jadhav, P. (2025). Enhancing personalization in IoT-based health monitoring via generative AI and transfer learning. Egyptian Informatics Journal, 32, 100788. https://doi.org/10.1016/j.eij.2025.100788 DOI: https://doi.org/10.1016/j.eij.2025.100788
Onu, P., Mbohwa, C., & Pradhan, A. (2024). Internet of Production: Unleashing the Full Potential of Industry 4.0 – A Comprehensive Review of Trends, Drivers, and Challenges. Procedia Computer Science, 232, 2049–2056. https://doi.org/10.1016/j.procs.2024.02.027 DOI: https://doi.org/10.1016/j.procs.2024.02.027
Qureshi, S. S., He, J., Zhu, N., Nazir, A., Fang, J., Ma, X., Wajahat, A., Ullah, F., Qureshi, S., Dhelim, S., & Pathan, M. S. (2025). Enhancing IoT security and healthcare data protection in the metaverse: A Dynamic Adaptive Security Mechanism. Egyptian Informatics Journal, 30, 100670. https://doi.org/10.1016/j.eij.2025.100670 DOI: https://doi.org/10.1016/j.eij.2025.100670
Rezaei, M. (2025). Artificial intelligence in knowledge management: Identifying and addressing the key implementation challenges. Technological Forecasting and Social Change, 217, 124183. https://doi.org/10.1016/j.techfore.2025.124183 DOI: https://doi.org/10.1016/j.techfore.2025.124183
Sharafat, M. S., Kabya, N. D., Emu, R. I., Ahmed, M. U., Onik, J. C., Islam, M. A., & Khan, R. (2025). An IoT-enabled AI system for real-time crop prediction using soil and weather data in precision agriculture. Smart Agricultural Technology, 12, 101263. https://doi.org/10.1016/j.atech.2025.101263 DOI: https://doi.org/10.1016/j.atech.2025.101263
Shonubi, O. A. (2025). The role of digital B2B platforms with industry 4.0 technological ecosystems(integration of cloud computing, artificial intelligence and internet of things) as a growth lever. Sustainable Futures, 10, 101041. https://doi.org/10.1016/j.sftr.2025.101041 DOI: https://doi.org/10.1016/j.sftr.2025.101041
Somabut, A., Tuamsuk, K., Lowatcharin, G., Traiyarach, S., & Kwangmuang, P. (2025). Preparing for the AI era: Science teachers’ readiness and professional development needs for generative AI integration in secondary education. Social Sciences & Humanities Open, 12, 102259. https://doi.org/10.1016/j.ssaho.2025.102259 DOI: https://doi.org/10.1016/j.ssaho.2025.102259
Szromek, A. R., & Bugdol, M. (2025). A cross-sectional perspective on the development of the tourism area life cycle model through the implementation of open innovation rough the implementation of open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 11(4), 100632. https://doi.org/10.1016/j.joitmc.2025.100632 DOI: https://doi.org/10.1016/j.joitmc.2025.100632
Tariq, M. U., Saqib, S. M., Mazhar, T., Khan, M. A., Shahzad, T., & Hamam, H. (2025). Edge-enabled smart agriculture framework: Integrating IoT, lightweight deep learning, and agentic AI for context-aware farming. Results in Engineering, 28, 107342. https://doi.org/10.1016/j.rineng.2025.107342 DOI: https://doi.org/10.1016/j.rineng.2025.107342
Zhang, Y., & Yu, S. (2025). Harmonizing AI: A GAN–Transformer fusion for expressive multimodal music synthesis in IoT systems. Alexandria Engineering Journal, 131, 368–382. https://doi.org/10.1016/j.aej.2025.07.043 DOI: https://doi.org/10.1016/j.aej.2025.07.043
License
Copyright (c) 2025 Syarip, Dadang

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






