Vol. 11 No. 12 (2025): December
Open Access
Peer Reviewed

Adaptive Management Model for the Development of AI-Based Science Learning Media and IoT in The Society 5.0 Era: A Literature Study

Authors

Syarip , Dadang

DOI:

10.29303/jppipa.v11i12.13819

Published:

2025-12-31

Downloads

Abstract

The transition from Industry 4.0 to Society 5.0 has transformed educational paradigms, particularly in science education, necessitating adaptive management approaches to integrating advanced technologies. This literature study examines the adaptive management model for developing AI and IoT-based science learning media in the Society 5.0 era. Through systematic analysis of 10 peer-reviewed articles from 2020–2025 sourced from Google Scholar, Scopus, and ERIC databases, this research identifies critical components, challenges, and opportunities in technology-integrated science education. Findings reveal that AI enables personalized science learning through adaptive algorithms and data analytics, while IoT facilitates real-time experiential learning through connected laboratory equipment and environmental sensors. The proposed adaptive management model integrates technological infrastructure, teacher competency development, curriculum alignment, and ethical considerations to create responsive science learning ecosystems. Key challenges include digital divides, infrastructure limitations, and balancing technology with humanistic educational values. This model offers significant implications for enhancing scientific literacy, experiential learning, and 21st-century skills development in science classrooms. The research contributes a conceptual framework for educational stakeholders to implement adaptive, technology-enhanced science education aligned with Society 5.0 principles.

Keywords:

Adaptive management AI-Based Learning Media Educational technology IoT Learning Media Science education Society 5.0

References

Abyaneh, A. G., Ghanbari, H., Mohammadi, E., Amirsahami, A., & Khakbazan, M. (2025). An analytical review of artificial intelligence applications in sustainable supply chains. Supply Chain Analytics, 12, 100173. https://doi.org/10.1016/j.sca.2025.100173 DOI: https://doi.org/10.1016/j.sca.2025.100173

Adler, I., Montal, Y., & Soffer-Vital, S. (2025). Bridging culture and technology: Supporting teachers in developing culturally responsive pedagogies for technology integration. Computers in Human Behavior Reports, 20, 100840. https://doi.org/10.1016/j.chbr.2025.100840 DOI: https://doi.org/10.1016/j.chbr.2025.100840

Alazmi, M., Alshammari, M., Alabbad, D. A., Abosaq, H. A., Hegazy, O., Alalayah, K. M., Mustafa, N. O. A., Zamani, A. S., & Hussain, S. (2025). An IoT-Enabled Hybrid Deep Q-Learning and Elman Neural Network Framework for Proactive Crop Healthcare in the Agriculture Sector. Internet of Things, 33, 101700. https://doi.org/10.1016/j.iot.2025.101700 DOI: https://doi.org/10.1016/j.iot.2025.101700

Albrecht, V., Müller-Reif, J., Nordmann, T. M., Mund, A., Schweizer, L., Geyer, P. E., Niu, L., Wang, J., Post, F., Oeller, M., Metousis, A., Bach Nielsen, A., Steger, M., Wewer Albrechtsen, N. J., & Mann, M. (2024). Bridging the Gap From Proteomics Technology to Clinical Application: Highlights From the 68th Benzon Foundation Symposium. Molecular & Cellular Proteomics, 23(12), 100877. https://doi.org/10.1016/j.mcpro.2024.100877 DOI: https://doi.org/10.1016/j.mcpro.2024.100877

Alshuhail, A., Alshahrani, A., Mahgoub, H., Ghaleb, M., Darem, A. A., Aljehane, N. O., Alotaibi, M., & Alzahrani, F. (2025). Machine edge-aware IoT framework for real-time health monitoring: Sensor fusion and AI-driven emergency response in decentralized networks. Alexandria Engineering Journal, 129, 1349–1361. https://doi.org/10.1016/j.aej.2025.08.030 DOI: https://doi.org/10.1016/j.aej.2025.08.030

Alwakeel, A. M. (2025). Enhancing IoT performance in wireless and mobile networks through named data networking (NDN) and edge computing integration. Computer Networks, 264, 111267. https://doi.org/10.1016/j.comnet.2025.111267 DOI: https://doi.org/10.1016/j.comnet.2025.111267

Antomarioni, S., Fani, V., Bandinelli, R., Ciarapica, F. E., & Bevilacqua, M. (2025). Toward Quality 5.0: Integrating Industry 4.0, Human-Centricity, and Quality Management. IFAC-PapersOnLine, 59(10), 1414–1419. https://doi.org/10.1016/j.ifacol.2025.09.238 DOI: https://doi.org/10.1016/j.ifacol.2025.09.238

Azarian, M., Yu, H., Shiferaw, A. T., & Stevik, T. K. (2023). Do we perform systematic literature review right? A scientific mapping and methodological assessment. Logistics, 7(4), 89. https://doi.org/10.3390/logistics7040089 DOI: https://doi.org/10.3390/logistics7040089

Bramer, W. M., De Jonge, G. B., Rethlefsen, M. L., Mast, F., & Kleijnen, J. (2018). A systematic approach to searching: an efficient and complete method to develop literature searches. Journal of the Medical Library Association: JMLA, 106(4), 531. https://doi.org/10.5195/jmla.2018.283 DOI: https://doi.org/10.5195/jmla.2018.283

Casas, P., & Palomes, X. (2025). Building Society 5.0: A foundation for decision-making based on open models and digital twins. Advanced Engineering Informatics, 69, 103970. https://doi.org/10.1016/j.aei.2025.103970 DOI: https://doi.org/10.1016/j.aei.2025.103970

Chen, Z., & Dai, X. (2024). Utilizing AI and IoT technologies for identifying risk factors in sports. Heliyon, 10(11), 32477. https://doi.org/10.1016/j.heliyon.2024.e32477 DOI: https://doi.org/10.1016/j.heliyon.2024.e32477

Chookaew, S., Kitcharoen, P., Howimanporn, S., & Panjaburee, P. (2024). Fostering student competencies and perceptions through artificial intelligence of things educational platform. Computers and Education: Artificial Intelligence, 7, 100308. https://doi.org/10.1016/j.caeai.2024.100308 DOI: https://doi.org/10.1016/j.caeai.2024.100308

Eriksson, K. M., Olsson, A. K., & Carlsson, L. (2024). Beyond lean production practices and Industry 4.0 technologies toward the human-centric Industry 5.0. Technological Sustainability, 3(3), 286–308. https://doi.org/10.1108/TECHS-11-2023-0049 DOI: https://doi.org/10.1108/TECHS-11-2023-0049

Feng, S., Zhang, H., & Gašević, D. (2025). Mapping the evolution of AI in education: Toward a co-adaptive and human-centered paradigm. Computers and Education: Artificial Intelligence, 9, 100513. https://doi.org/10.1016/j.caeai.2025.100513 DOI: https://doi.org/10.1016/j.caeai.2025.100513

Firoozi, A. A., Firoozi, A. A., & Maghami, M. R. (2025). Transforming civil engineering: The role of nanotechnology and AI in advancing material durability and structural health monitoring. Case Studies in Construction Materials, 23, 5063. https://doi.org/10.1016/j.cscm.2025.e05063 DOI: https://doi.org/10.1016/j.cscm.2025.e05063

Gahar, R. M., Gorchene, B., Hidri, A., Arfaoui, O., & Hidri, M. S. (2025). Building Intelligent Educational Agents: A Scalable LLM-Based Framework for Assessment Generation. Procedia Computer Science, 270, 4075–4084. https://doi.org/10.1016/j.procs.2025.09.532 DOI: https://doi.org/10.1016/j.procs.2025.09.532

Gasparyan, A. Y., Yessirkepov, M., Voronov, A. A., Trukhachev, V. I., Kostyukova, E. I., Gerasimov, A. N., & Kitas, G. D. (2016). Specialist bibliographic databases. Journal of Korean Medical Science, 31(5), 660–673. https://doi.org/10.3346/jkms.2016.31.5.660 DOI: https://doi.org/10.3346/jkms.2016.31.5.660

Gellert, B., Budde, F., Buße, D., & Orth, R. (2024). Adapting Business Models for Circular Economy: Practical Step-by-Step Methodology and Case Study Analysis from a German SME. Procedia CIRP, 135, 338–343. https://doi.org/10.1016/j.procir.2024.12.028 DOI: https://doi.org/10.1016/j.procir.2024.12.028

Hachoumi, N., Eddabbah, M., & El adib, A. R. (2025). Enhancing teaching and learning in health sciences education through the integration of Bloom’s taxonomy and artificial intelligence. Informatics and Health, 2(2), 130–136. https://doi.org/10.1016/j.infoh.2025.05.002 DOI: https://doi.org/10.1016/j.infoh.2025.05.002

Halidu, O. B., Awuah-Gyawu, M., Otchere Fianko, A., Gyamfi, B. A., & Asongu, S. A. (2025). Corporate governance and circular supply chains: Synergizing eco-adaptive organizational culture, leadership eco-innovation willingness, and perceived urgency for circularity. Journal of Environmental Management, 392, 126689. https://doi.org/10.1016/j.jenvman.2025.126689 DOI: https://doi.org/10.1016/j.jenvman.2025.126689

Hossain, M., Ahmad, F., Aleem, M., Bask, A., & Rajahonka, M. (2025). Emerging technologies in sharing economy: A review and research agenda. Technological Forecasting and Social Change, 218, 124218. https://doi.org/10.1016/j.techfore.2025.124218 DOI: https://doi.org/10.1016/j.techfore.2025.124218

Hu, Z. (2025). A method for generating personalized learning content based on AIGC. Sustainable Futures, 10, 101331. https://doi.org/10.1016/j.sftr.2025.101331 DOI: https://doi.org/10.1016/j.sftr.2025.101331

Hussain, Z., Mohammad, S. I., Vasudevan, A., Awad, A., & Bansal, R. (2025). Exploring the effect of industry 5.0 human-centric sustainability and green knowledge automation in enhancing green process adaptability: The mediating role of sustainable human-tech interaction. Journal of Cleaner Production, 537, 147240. https://doi.org/10.1016/j.jclepro.2025.147240 DOI: https://doi.org/10.1016/j.jclepro.2025.147240

Ishtiaq, W., Zannat, A., Shahariar Parvez, A. H. M., Hossain, A., Md., H. K., M., & Masud Tarek, M. (2025). CST-AFNet: A dual attention-based deep learning framework for intrusion detection in IoT networks. Array, 27, 100501. https://doi.org/10.1016/j.array.2025.100501 DOI: https://doi.org/10.1016/j.array.2025.100501

Kitchenham, B., Budgen, D., Brereton, P., Turner, M., Charters, S., & Linkman, S. (2007). Large-scale software engineering questions--expert opinion or empirical evidence? IET Software, 1(5), 161–171. https://doi.org/10.1049/iet-sen:20060052 DOI: https://doi.org/10.1049/iet-sen:20060052

Koch, V., Tomasevic, D., Pacher, C., & Zunk, B. M. (2025). Preparing Students for Industry 5.0: Evaluating the Industrial Engineering and Management Education. Procedia Computer Science, 253, 2219–2228. https://doi.org/10.1016/j.procs.2025.01.282 DOI: https://doi.org/10.1016/j.procs.2025.01.282

Kumar, D., Bakariya, B., Verma, C., & Illes, Z. (2025). LivXAI-Net: An explainable AI framework for liver disease diagnosis with IoT-based real-time monitoring support. Computer Methods and Programs in Biomedicine, 270, 108950. https://doi.org/10.1016/j.cmpb.2025.108950 DOI: https://doi.org/10.1016/j.cmpb.2025.108950

Luger, L., Koch, V., Pacher, C., & Zunk, B. M. (2025). Investigating the Influence of the Transition from Industry 4.0 to 5.0 on the Education and Career Development of Industrial Engineers and Managers. Procedia Computer Science, 253, 1750–1759. https://doi.org/10.1016/j.procs.2025.01.237 DOI: https://doi.org/10.1016/j.procs.2025.01.237

Mahajan, R. A., Dey, R., Khan, M., Su’ud, M. M., Alam, M. M., & Jadhav, P. (2025). Enhancing personalization in IoT-based health monitoring via generative AI and transfer learning. Egyptian Informatics Journal, 32, 100788. https://doi.org/10.1016/j.eij.2025.100788 DOI: https://doi.org/10.1016/j.eij.2025.100788

Onu, P., Mbohwa, C., & Pradhan, A. (2024). Internet of Production: Unleashing the Full Potential of Industry 4.0 – A Comprehensive Review of Trends, Drivers, and Challenges. Procedia Computer Science, 232, 2049–2056. https://doi.org/10.1016/j.procs.2024.02.027 DOI: https://doi.org/10.1016/j.procs.2024.02.027

Qureshi, S. S., He, J., Zhu, N., Nazir, A., Fang, J., Ma, X., Wajahat, A., Ullah, F., Qureshi, S., Dhelim, S., & Pathan, M. S. (2025). Enhancing IoT security and healthcare data protection in the metaverse: A Dynamic Adaptive Security Mechanism. Egyptian Informatics Journal, 30, 100670. https://doi.org/10.1016/j.eij.2025.100670 DOI: https://doi.org/10.1016/j.eij.2025.100670

Rezaei, M. (2025). Artificial intelligence in knowledge management: Identifying and addressing the key implementation challenges. Technological Forecasting and Social Change, 217, 124183. https://doi.org/10.1016/j.techfore.2025.124183 DOI: https://doi.org/10.1016/j.techfore.2025.124183

Sharafat, M. S., Kabya, N. D., Emu, R. I., Ahmed, M. U., Onik, J. C., Islam, M. A., & Khan, R. (2025). An IoT-enabled AI system for real-time crop prediction using soil and weather data in precision agriculture. Smart Agricultural Technology, 12, 101263. https://doi.org/10.1016/j.atech.2025.101263 DOI: https://doi.org/10.1016/j.atech.2025.101263

Shonubi, O. A. (2025). The role of digital B2B platforms with industry 4.0 technological ecosystems(integration of cloud computing, artificial intelligence and internet of things) as a growth lever. Sustainable Futures, 10, 101041. https://doi.org/10.1016/j.sftr.2025.101041 DOI: https://doi.org/10.1016/j.sftr.2025.101041

Somabut, A., Tuamsuk, K., Lowatcharin, G., Traiyarach, S., & Kwangmuang, P. (2025). Preparing for the AI era: Science teachers’ readiness and professional development needs for generative AI integration in secondary education. Social Sciences & Humanities Open, 12, 102259. https://doi.org/10.1016/j.ssaho.2025.102259 DOI: https://doi.org/10.1016/j.ssaho.2025.102259

Szromek, A. R., & Bugdol, M. (2025). A cross-sectional perspective on the development of the tourism area life cycle model through the implementation of open innovation rough the implementation of open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 11(4), 100632. https://doi.org/10.1016/j.joitmc.2025.100632 DOI: https://doi.org/10.1016/j.joitmc.2025.100632

Tariq, M. U., Saqib, S. M., Mazhar, T., Khan, M. A., Shahzad, T., & Hamam, H. (2025). Edge-enabled smart agriculture framework: Integrating IoT, lightweight deep learning, and agentic AI for context-aware farming. Results in Engineering, 28, 107342. https://doi.org/10.1016/j.rineng.2025.107342 DOI: https://doi.org/10.1016/j.rineng.2025.107342

Zhang, Y., & Yu, S. (2025). Harmonizing AI: A GAN–Transformer fusion for expressive multimodal music synthesis in IoT systems. Alexandria Engineering Journal, 131, 368–382. https://doi.org/10.1016/j.aej.2025.07.043 DOI: https://doi.org/10.1016/j.aej.2025.07.043

Author Biographies

Syarip, UIN Raden Fatah

Author Origin : Indonesia

Dadang, UIN Raden Fatah

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Syarip, & Dadang. (2025). Adaptive Management Model for the Development of AI-Based Science Learning Media and IoT in The Society 5.0 Era: A Literature Study. Jurnal Penelitian Pendidikan IPA, 11(12), 59–66. https://doi.org/10.29303/jppipa.v11i12.13819