Oxyhydrogen Nanobubbles Suppress FoxP3 and Ki-67 Expression in a Wistar Rat Model of Hepatocellular Carcinoma
DOI:
10.29303/jppipa.v12i1.13858Published:
2026-01-25Downloads
Abstract
HCC is difficult to treat due to its complex tumor microenvironment and the ineffectiveness of available therapies. Gas-based anticancer approaches are promising, but are hampered by instability and difficulties in targeted delivery. HHOnbs (containing hydrogen (H2), oxygen (O2), and low-dose hydrogen peroxide (H2O2) at the nanoscale) have been proposed to improve the stability and precision of gas-based therapies. This study aimed to investigate the effects of HHOnbs on the immunoregulatory marker FoxP3 and the proliferation marker Ki-67 in a Wistar rat model of HCC induced by diethylnitrosamine (DEN)/carbon tetrachloride (CCl4). The design used was a true experimental design. HHOnbs were administered intravenously. Liver tissue was assessed using immunohistochemistry to measure FoxP3 and Ki-67 expression. HHOnbs treatment significantly reduced FoxP3 and Ki-67 expression (p<0.05). FoxP3 is a marker of regulatory T cells (Tregs), which often inhibit antitumor immune responses. Its decrease indicates an increased immune response potential. Ki-67 is a marker of cell proliferation. Its decrease indicates the suppression of cancer cell growth. Further investigations are warranted to compare its efficacy with standard therapies, assess different treatment durations, and elucidate the underlying molecular signaling pathways.
Keywords:
Forkhead box P3 In Vivo Ki-67 Liver cancer Nanobubbles Oxyhydrogen Tumor microenvironment indexReferences
Alfaar, A. S., Stürzbecher, L., Diedrichs-Möhring, M., Lam, M., Roubeix, C., Ritter, J., Schumann, K., Annamalai, B., Pompös, I.-M., Rohrer, B., Sennlaub, F., Reichhart, N., Wildner, G., & Strauß, O. (2022). FoxP3 expression by retinal pigment epithelial cells: transcription factor with potential relevance for the pathology of age-related macular degeneration. Journal of Neuroinflammation, 19(1), 260. https://doi.org/10.1186/s12974-022-02620-w
Alghezi, D. A., Aljawher, R., & Mosa, H. N. (2025). Increased KI67 Immunostaining is Associated with Breast Cancer Aggressiveness. Journal of Cancer Research Updates, 14, 170–180. https://doi.org/10.30683/1929-2279.2025.14.19
Andrés-Sánchez, N., Fisher, D., & Krasinska, L. (2022). Physiological functions and roles in cancer of the proliferation marker Ki-67. Journal of Cell Science, 135(11). https://doi.org/10.1242/jcs.258932
Anggi, V., Patala, R., Arfiah, A., & Dewi, N. P. (2023). Anticancer Activity of Rosella Flowers (Hibiscus Sabdariffa l.) In HepG2 cells. Jurnal Penelitian Pendidikan IPA, 9(SpecialIssue), 698–703. https://doi.org/10.29303/jppipa.v9iSpecialIssue.6350
Bedatsova, L., & Drake, M. T. (2019). The skeletal impact of cancer therapies. British Journal of Clinical Pharmacology, 85(6), 1161–1168. https://doi.org/10.1111/bcp.13866
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74(3), 229–263. https://doi.org/10.3322/caac.21834
Cavalli, R., Soster, M., & Argenziano, M. (2016). Nanobubbles: A Promising Efficient Tool for Therapeutic Delivery. Therapeutic Delivery, 7(2), 117–138. https://doi.org/10.4155/tde.15.92
Chen, C., Wang, Z., Ding, Y., & Qin, Y. (2023). Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Frontiers in Immunology, 14, 1133308. https://doi.org/10.3389/fimmu.2023.1133308
Choulli, F., Tafenzi, H. A., Hattimy, F. EL, Choulli, M. K., & Belbaraka, R. (2024). Chemotherapy-related adverse effects with anthracycline and taxane-containing regimens in patients with localized Breast cancer: a descriptive study. BMC Cancer, 24(1), 17. https://doi.org/10.1186/s12885-023-11616-5
Chua, P.-J., Yip, G. W.-C., & Bay, B.-H. (2009). Cell Cycle Arrest Induced by Hydrogen Peroxide Is Associated with Modulation of Oxidative Stress Related Genes in Breast Cancer Cells. Experimental Biology and Medicine, 234(9), 1086–1094. https://doi.org/10.3181/0903-RM-98
Contreras-Kallens, P., Gálvez-Jirón, F., De Solminihac, J., Elhusseiny, A., González-Arriagada, W. A., Alcayaga-Miranda, F., Noelle, R. J., & Pino-Lagos, K. (2022). CD49b Targeting Inhibits Tumor Growth and Boosts Anti-tumor Immunity. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.928498
Demir, K. C., Avci, A. U., Ozgok Kangal, M. K., Ceylan, B., Abayli, S. Y., Ozler, I., & Yilmaz, K. B. (2025). Hyperbaric Oxygen Therapy for Managing Cancer Treatment Complications: A Safety Evaluation. Medicina, 61(3), 385. https://doi.org/10.3390/medicina61030385
Feldman, L. (2024). Hypoxia within the glioblastoma tumor microenvironment: a master saboteur of novel treatments. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1384249
González-Navajas, J. M., Fan, D. D., Yang, S., Yang, F. M., Lozano-Ruiz, B., Shen, L., & Lee, J. (2021). The Impact of Tregs on the Anticancer Immunity and the Efficacy of Immune Checkpoint Inhibitor Therapies. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.625783
Granito, A., Muratori, L., Lalanne, C., Quarneti, C., Ferri, S., Guidi, M., Lenzi, M., & Muratori, P. (2021). Hepatocellular carcinoma in viral and autoimmune liver diseases: Role of CD4+ CD25+ Foxp3+ regulatory T cells in the immune microenvironment. World Journal of Gastroenterology, 27(22), 2994–3009. https://doi.org/10.3748/wjg.v27.i22.2994
Guan, Y., Yan, A., Qiang, W., Ruan, R., Yang, C., Ma, K., Sun, H., Liu, M., & Zhu, H. (2023). Selective Delivery of Tofacitinib Citrate to Hair Follicles Using Lipid-Coated Calcium Carbonate Nanocarrier Controls Chemotherapy-Induced Alopecia Areata. International Journal of Molecular Sciences, 24(9), 8427. https://doi.org/10.3390/ijms24098427
Guo, Q., Zhu, X., Beeraka, N. M., Zhao, R., Li, S., Li, F., Mahesh, P. A., Nikolenko, V. N., Fan, R., & Liu, J. (2024a). Projected epidemiological trends and burden of liver cancer by 2040 based on GBD, CI5plus, and WHO data. Scientific Reports, 14(1), 28131. https://doi.org/10.1038/s41598-024-77658-2
Guo, T., Wang, Y., Chen, D., Cui, S., Guo, S., Feng, Y., Zhu, J., Chang, L., Zhang, J., Gao, X., & Wei, X. (2024b). Dual-Drug Loaded Nanobubbles Combined with Sonodynamic and Chemotherapy for Hepatocellular Carcinoma Therapy. International Journal of Nanomedicine, 19, 7367–7381. https://doi.org/10.2147/IJN.S460329
Guo, X.-F., Chao, S.-L., Li, X.-X., Ren, H.-T., Gong, G.-H., Liu, Y., & Han, X. (2025c). Highly stable nanobubbles in the reduction of apparent viscosity of liquids during UF process. Separation and Purification Technology, 354, 128963. https://doi.org/10.1016/j.seppur.2024.128963
Haukland, E. C., von Plessen, C., Nieder, C., & Vonen, B. (2020). Adverse events in deceased hospitalised cancer patients as a measure of quality and safety in end-of-life cancer care. BMC Palliative Care, 19(1), 76. https://doi.org/10.1186/s12904-020-00579-0
He, Q. (2017). Precision gas therapy using intelligent nanomedicine. Biomaterials Science, 5(11), 2226–2230. https://doi.org/10.1039/C7BM00699C
Hipólito, A., Nunes, S. C., Vicente, J. B., & Serpa, J. (2020). Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules, 25(17), 3984. https://doi.org/10.3390/molecules25173984
Hooda, V., Akhtar, S., & Sharma, A. (2024). Regulatory T cells: mechanisms of action. In Regulatory T Cells and Autoimmune Diseases (pp. 17–39). Elsevier. https://doi.org/10.1016/B978-0-443-13947-5.00017-8
Indrajani, O., Hernowo, A. T., Ekasari, C. P., Yudhanata, R., & Sumitro, S. B. (2025). The Effect of Intravenous Oxyhydrogen Nanobubble on Chronic Kidney Disease: Case Series. Clinical Therapeutics, 47(9), e13–e17. https://doi.org/10.1016/j.clinthera.2025.06.018
Jin, J., Yang, L., Chen, F., & Gu, N. (2022). Drug delivery system based on nanobubbles. Interdisciplinary Materials, 1(4), 471–494. https://doi.org/10.1002/idm2.12050
Jing, Y.-Z., Li, S.-J., & Sun, Z.-J. (2021). Gas and gas-generating nanoplatforms in cancer therapy. Journal of Materials Chemistry B, 9(41), 8541–8557. https://doi.org/10.1039/D1TB01661J
Kehr, N. S. (2024). The Effect of Co‐Delivery of Oxygen and Anticancer Drugs on the Viability of Healthy and Cancer Cells under Normoxic and Hypoxic Conditions. Macromolecular Bioscience. https://doi.org/10.1002/mabi.202400181
Kourek, C., Touloupaki, M., Rempakos, A., Loritis, K., Tsougkos, E., Paraskevaidis, I., & Briasoulis, A. (2022). Cardioprotective Strategies from Cardiotoxicity in Cancer Patients: A Comprehensive Review. Journal of Cardiovascular Development and Disease, 9(8), 259. https://doi.org/10.3390/jcdd9080259
Lashen, A. G., Toss, M. S., Ghannam, S. F., Makhlouf, S., Green, A., Mongan, N. P., & Rakha, E. (2023). Expression, assessment and significance of Ki67 expression in breast cancer: an update. Journal of Clinical Pathology, 76(6), 357–364. https://doi.org/10.1136/jcp-2022-208731
Lim, H., Oh, C., Park, M.-S., Park, H.-B., Ahn, C., Bae, W. K., Yoo, K. H., & Hong, S. (2023). Hint from an Enzymatic Reaction: Superoxide Dismutase Models Efficiently Suppress Colorectal Cancer Cell Proliferation. Journal of the American Chemical Society, 145(29), 16058–16068. https://doi.org/10.1021/jacs.3c04414
Liu, J., Kuang, S., Zheng, Y., Liu, M., & Wang, L. (2021a). Prognostic and predictive significance of the tumor microenvironment in hepatocellular carcinoma. Cancer Biomarkers, 32(1), 99–110. https://doi.org/10.3233/CBM-203003
Liu, Y., Yang, S., Zhou, Q., Zhou, J., Li, J., Ma, Y., Hu, B., Liu, C., & Zhao, Y. (2022b). Nanobubble-based anti-hepatocellular carcinoma therapy combining immune check inhibitors and sonodynamic therapy. Nanoscale Advances, 4(22), 4847–4862. https://doi.org/10.1039/D2NA00322H
Masuzaki, R. (2023). Liver Cancer: Improving Standard Diagnosis and Therapy. Cancers, 15(18), 4602. https://doi.org/10.3390/cancers15184602
Melyda, Gondhowiardjo, S., Jackson, L. J., & Oppong, R. (2022). Planning human resources and facilities to achieve Sustainable Development Goals: a decision-analytical modelling approach to predict cancer control requirements in Indonesia. BMJ Open, 12(5), e059555. https://doi.org/10.1136/bmjopen-2021-059555
Meng, X., Liu, Z., Deng, L., Yang, Y., Zhu, Y., Sun, X., Hao, Y., He, Y., & Fu, J. (2024). Hydrogen Therapy Reverses Cancer‐Associated Fibroblasts Phenotypes and Remodels Stromal Microenvironment to Stimulate Systematic Anti‐Tumor Immunity. Advanced Science, 11(28). https://doi.org/10.1002/advs.202401269
Meng, Y., Lu, J., Liu, X., Liu, R., Dai, D., Sun, Y., & Sun, T. (2025). Multifunctional Responsive Gas‐Releasing Metal Organic Framework Nanoplatform for Tumor Therapy Application. ChemMedChem, 20(19). https://doi.org/10.1002/cmdc.202500602
Mossenta, M., Argenziano, M., Capolla, S., Busato, D., Durigutto, P., Mangogna, A., Polano, M., Sblattero, D., Cavalli, R., Macor, P., Toffoli, G., & Dal Bo, M. (2025). Idarubicin-loaded chitosan nanobubbles to improve survival and decrease drug side effects in hepatocellular carcinoma. Nanomedicine, 20(3), 255–270. https://doi.org/10.1080/17435889.2025.2452154
Murakami, Y., Ito, M., & Ohsawa, I. (2017). Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. Plos One, 12(5), e0176992. https://doi.org/10.1371/journal.pone.0176992
Muth, S., Klaric, A., Radsak, M., Schild, H., & Probst, H. C. (2022). CD27 expression on Treg cells limits immune responses against tumors. Journal of Molecular Medicine, 100(3), 439–449. https://doi.org/10.1007/s00109-021-02116-9
Qin, S., Xu, Y., Li, H., Chen, H., & Yuan, Z. (2022). Recent advances in in situ oxygen-generating and oxygen-replenishing strategies for hypoxic-enhanced photodynamic therapy. Biomaterials Science, 10(1), 51–84. https://doi.org/10.1039/D1BM00317H
Raissa, R., Riawan, W., Safitri, A., Masruri, M., Beltran, M. A. G., & Aulanniam, A. (2022). In vitro and in vivo study: Ethanolic extract leaves of Azadirachta indica Juss. variant of Indonesia and Philippines suppresses tumor growth of hepatocellular carcinoma by inhibiting IL-6/STAT3 signaling. F1000Research, 11, 477. https://doi.org/10.12688/f1000research.109557.1
Ramos-Santillan, V., Oshi, M., Nelson, E., Endo, I., & Takabe, K. (2024). High Ki67 Gene Expression Is Associated With Aggressive Phenotype in Hepatocellular Carcinoma. World Journal of Oncology, 15(2), 257–267. https://doi.org/10.14740/wjon1751
Rueda, C. M., Jackson, C. M., & Chougnet, C. A. (2016). Regulatory T-Cell-Mediated Suppression of Conventional T-Cells and Dendritic Cells by Different cAMP Intracellular Pathways. Frontiers in Immunology, 7. https://doi.org/10.3389/fimmu.2016.00216
Sarkar, S., Das, J., Debnath, B., Ramzan, M., Ashique, S., & Taghizadeh-Hesary, F. (2025). Nanobubbles: An emerging therapeutic paradigm for targeted cancer therapy. Bioorganic Chemistry, 164, 108927. https://doi.org/10.1016/j.bioorg.2025.108927
Sun, E. J., Wankell, M., Palamuthusingam, P., McFarlane, C., & Hebbard, L. (2021). Targeting the PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma. Biomedicines, 9(11), 1639. https://doi.org/10.3390/biomedicines9111639
Teng, C.-F., Li, T.-C., Wang, T., Liao, D.-C., Wen, Y.-H., Wu, T.-H., Wang, J., Wu, H.-C., Shyu, W.-C., Su, I.-J., & Jeng, L.-B. (2021). Increased infiltration of regulatory T cells in hepatocellular carcinoma of patients with hepatitis B virus pre-S2 mutant. Scientific Reports, 11(1), 1136. https://doi.org/10.1038/s41598-020-80935-5
Terlikowska, K. M., Dobrzycka, B., & Terlikowski, S. J. (2024). Modifications of Nanobubble Therapy for Cancer Treatment. International Journal of Molecular Sciences, 25(13), 7292. https://doi.org/10.3390/ijms25137292
Tu, J.-F., Ding, Y.-H., Ying, X.-H., Wu, F.-Z., Zhou, X.-M., Zhang, D.-K., Zou, H., & Ji, J.-S. (2016). Regulatory T cells, especially ICOS(+) FOXP3(+) regulatory T cells, are increased in the hepatocellular carcinoma microenvironment and predict reduced survival. Scientific Reports, 6, 35056. https://doi.org/10.1038/srep35056
Upadhyay, D., Chang, W., Wei, K., Gao, M., & Rosen, G. D. (2007). Fibroblast growth factor‐10 prevents H2O2‐induced cell cycle arrest by regulation of G1 cyclins and cyclin dependent kinases. FEBS Letters, 581(2), 248–252. https://doi.org/10.1016/j.febslet.2006.12.020
Villanueva, A. (2019). Hepatocellular Carcinoma. New England Journal of Medicine, 380(15), 1450–1462. https://doi.org/10.1056/NEJMra1713263
Wang, D., Wang, L., Zhang, Y., Zhao, Y., & Chen, G. (2018a). Hydrogen gas inhibits lung cancer progression through targeting SMC3. Biomedicine & Pharmacotherapy, 104, 788–797. https://doi.org/10.1016/j.biopha.2018.05.055
Wang, J., Gong, R., Zhao, C., Lei, K., Sun, X., & Ren, H. (2023a). Human FOXP3 and tumour microenvironment. Immunology, 168(2), 248–255. https://doi.org/10.1111/imm.13520
Wang, L., Zhang, F., Peng, W., Zhang, J., Dong, W., Yuan, D., Wang, Z., & Zheng, Y. (2020a). Preincubation with a low-dose hydrogen peroxide enhances anti-oxidative stress ability of BMSCs. Journal of Orthopaedic Surgery and Research, 15(1), 392. https://doi.org/10.1186/s13018-020-01916-y
Wu, R., Yang, X., Li, X., Dong, N., Liu, Y., & Zhang, P. (2021). Nanobubbles for tumors: Imaging and drug carriers. Journal of Drug Delivery Science and Technology, 65, 102749. https://doi.org/10.1016/j.jddst.2021.102749
Yang, X., Ni, H., Lu, Z., Zhang, J., Zhang, Q., Ning, S., Qi, L., & Xiang, B. (2023). Mesenchymal circulating tumor cells and Ki67: their mutual correlation and prognostic implications in hepatocellular carcinoma. BMC Cancer, 23(1), 10. https://doi.org/10.1186/s12885-023-10503-3
Zappavigna, S., Cossu, A. M., Grimaldi, A., Bocchetti, M., Ferraro, G. A., Nicoletti, G. F., Filosa, R., & Caraglia, M. (2020). Anti-Inflammatory Drugs as Anticancer Agents. International Journal of Molecular Sciences, 21(7), 2605. https://doi.org/10.3390/ijms21072605
Zhang, Q., Liu, Y., Ren, L., Li, J., Lin, W., Lou, L., Wang, M., Li, C., & Jiang, Y. (2024a). Proteomic analysis of DEN and CCl4-induced hepatocellular carcinoma mouse model. Scientific Reports, 14(1), 8013. https://doi.org/10.1038/s41598-024-58587-6
Zhang, W., Leng, F., Wang, X., Ramirez, R. N., Park, J., Benoist, C., & Hur, S. (2023b). FOXP3 recognizes microsatellites and bridges DNA through multimerization. Nature, 624(7991), 433–441. https://doi.org/10.1038/s41586-023-06793-z
Zhou, W., Zhang, J., Chen, W., & Miao, C. (2024c). Prospects of molecular hydrogen in cancer prevention and treatment. Journal of Cancer Research and Clinical Oncology, 150(4), 170. https://doi.org/10.1007/s00432-024-05685-7
License
Copyright (c) 2026 Natasya Adiba Zahrah, Sri Widyarti, Dyah Kinasih Wuragil, Wibi Riawan, Olly Indrajani, Ahmad Lubab, Aditya Tri Hernowo, Sutiman Bambang Sumitro, Aulanni'am

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






