MRI Image Classification of Brain Tumors Using VGG16-Based Transfer Learning and Data Augmentation as a Medical Diagnosis Support System
DOI:
10.29303/jppipa.v12i1.14218Published:
2026-01-25Downloads
Abstract
Brain tumors are diseases that require early detection and accurate diagnosis. Various studies have applied deep learning methods to classify MRI images of brain tumors, but they still face dataset limitations and imbalanced class distributions that impact model performance. This study aims to evaluate the performance of the transfer learning-based VGG16 model in classifying brain tumors using MRI images. The study used 7,023 MRI images, including glioma, meningioma, pituitary, and no tumor, with a balanced training data distribution. Pre-processing included resizing, data splitting, and augmentation in the form of rotation, width shift, height shift, and zoom to increase data diversity and reduce the impact of class imbalance. The model was trained using several training-validation data splits (70:30, 80:20, and 90:10) with variations of the Adam, RMSprop, and AdamW optimizers and learning rates between 0.1 and 0.0001. The best configuration was obtained in the 80:20 scenario with the Adam optimizer and a learning rate of 0.0001, which was used in the final testing stage using test data that were never used during training and validation. The results showed the highest validation accuracy of 99.89% and a testing accuracy of 98.00%. Confusion matrix analysis showed that all classes could be classified well without prediction bias.
Keywords:
Brain Tumor Data Augmentation MRI Transfer Learning VGG16References
Aamir, M., Rahman, Z., Bhatti, U. A., Abro, W. A., Bhutto, J. A., & He, Z. (2025). An automated deep learning framework for brain tumor classification using MRI imagery. Scientific Reports, 15(1), 17593. https://doi.org/10.1038/s41598-025-02209-2
Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A., & Hamed, H. F. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300–318. https://doi.org/10.1016/j.mri.2019.05.028
Anam, M. K., Defit, S., Haviluddin, H., Efrizoni, L., & Firdaus, M. B. (2024). Early stopping on CNN-LSTM development to improve classification performance. Journal of Applied Data Sciences, 5(3), 1175–1188. https://doi.org/10.47738/jads.v5i3.312
Ardan, I. S., & Indraswari, R. (2024). Sistem Berbasis Deep Learning untuk Segmentasi dan Klasifikasi Tingkat Keganasan Tumor Otak Menggunakan Citra MRI 3D. ILKOMNIKA, 6(2), 117–126. https://doi.org/10.28926/ilkomnika.v6i2.643
Ariessaputra, S., Vidiasari, V. H., Al Sasongko, S. M., Darmawan, B., & Nababan, S. (2024). Classification of Lombok Songket and Sasambo Batik Motifs Using the Convolution Neural Network (CNN) Algorithm. JOIV: International Journal on Informatics Visualization, 8(1), 38–44. https://doi.org/10.62527/joiv.8.1.1386
Azhmy, M. F., Suyar, A. S., & Setiamy, A. A. (2024). Digital HRM with Machine Learning Approach. Jurnal Penelitian Pendidikan IPA, 10(SpecialIssue), 18–23. https://doi.org/10.29303/jppipa.v10iSpecialIssue.7213
Bichri, H., Chergui, A., & Hain, M. (2024). Investigating the Impact of Train/Test Split Ratio on the Performance of Pre-Trained Models with Custom Datasets. International Journal of Advanced Computer Science & Applications, 15(2). Retrieved from https://shorturl.asia/QpZ0n
Chazar, C., Adli, M. A., Pardede, J., & Ichwan, M. (2025). Pendekatan Augmentasi Citra Fundus pada Model EfficientNet untuk Klasifikasi Tingkat Keparahan Retinopati Diabetik dengan Dataset Tidak Seimbang. MIND (Multimedia Artificial Intelligent Networking Database) Journal, 10(2), 180–194. https://doi.org/10.26760/mindjournal.v10i2.180-194
Chen, W., Yang, K., Yu, Z., Shi, Y., & Chen, C. P. (2024). A survey on imbalanced learning: latest research, applications and future directions. Artificial Intelligence Review, 57(6), 137. https://doi.org/10.1007/s10462-024-10759-6
Davila, A., Colan, J., & Hasegawa, Y. (2024). Comparison of fine-tuning strategies for transfer learning in medical image classification. Image and Vision Computing, 146, 105012. https://doi.org/10.1016/j.imavis.2024.105012
Deb, N., & Rahman, T. (2025). An efficient VGG16-based deep learning model for automated potato pest detection. Smart Agricultural Technology, 101409. https://doi.org/10.1016/j.atech.2025.101409
Ependi, U., & Ahmad, N. A. (2024). A Novel Hybrid Classification on Urban Opinion Using ROS-RF: A Machine Learning Approach. Jurnal Penelitian Pendidikan IPA, 10(8), 5816–5824. https://doi.org/10.29303/jppipa.v10i8.8042
Essianda, V., Indrasari, A. D., Widyastuti, P., Syahla, T., & Rohadi, R. (2023). Brain Tumor: Molecular Biology, Pathophysiology, and Clinical Symptoms. Jurnal Biologi Tropis, 23(4), 260–269. https://doi.org/10.29303/jbt.v23i4.5585
Farhadpour, S., Warner, T. A., & Maxwell, A. E. (2024). Selecting and interpreting multiclass loss and accuracy assessment metrics for classifications with class imbalance: Guidance and best practices. Remote Sensing, 16(3), 533. https://doi.org/10.3390/rs16030533
Gayathri, T., & Kumar, S. (2024). Brain tumor segmentation and classification using cnn pre-trained vgg-16 model in mri images. IIUM Engineering Journal, 25(2), 196–211. https://doi.org/10.31436/iiumej.v25i2.2963
Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). A Pedagogical Explanation A Pedagogical Explanation Part of the Computer Sciences Commons. Retrieved from https://scholarworks.utep.edu/cs_techrephttps://scholarworks.utep.edu/cs_techrep/
Gorunescu, F. (2011). Data Mining: Concepts, models and techniques (Vol. 12). Springer Science & Business Media.
Ijaz, M., Hasan, I., Aslam, B., Yan, Y., Zeng, W., Gu, J., & Guo, B. (2025). Diagnostics of brain tumor in the early stage: current status and future perspectives. Biomaterials Science. https://doi.org/10.1039/D4BM01503G
Ilawanda, Z. M., & Atsani, G. F. (2021). Gambaran Radiologis pada Bidang Neurologis Tumor Otak. Jurnal Syntax Fusion, 1(12), 987–1001. Retrieved from https://shorturl.asia/8omJc
Islam, T., Hafiz, M. S., Jim, J. R., Kabir, M. M., & Mridha, M. F. (2024). A systematic review of deep learning data augmentation in medical imaging: Recent advances and future research directions. Healthcare Analytics, 5, 100340. https://doi.org/10.1016/j.health.2024.100340
Islami, F., & Defit, S. (2024). Customized Convolutional Neural Network for Glaucoma Detection in Retinal Fundus Images. Jurnal Penelitian Pendidikan IPA, 10(8), 4606–4613. https://doi.org/10.29303/jppipa.v10i8.7614
Kurniawan, M. A., Wijaya, S. K., & Hanifa, N. R. (2023). Convolutional neural network for earthquake ground motion prediction model in earthquake early warning system in West Java. Jurnal Penelitian Pendidikan IPA, 9(11), 1004–1010. https://doi.org/10.29303/jppipa.v9i11.3514
Kusuma, A. M. (2025). Musik sebagai Sarana Terapi dalam Pendidikan: Perspektif Neuroscience dan Neuroeducation. Irama: Jurnal Seni, Desain Dan Pembelajarannya, 7(1), 33–41. https://doi.org/10.17509/irama.v7i1.80905
Maspaeni, M., Imran, B., Hidayat, A., & Erniwati, S. (2025). Implementasi Machine Learning untuk Mendeteksi Penyakit Katarak menggunakan Kombinasi Ekstraksi Fitur dan Neural Network Berdasarkan Citra. JTIM: Jurnal Teknologi Informasi Dan Multimedia, 7(2), 232–251. https://doi.org/10.35746/jtim.v7i2.621
Mirza, A. H., Halim, R. N., & Hasbiallah, M. J. (2025). Development of an Efficient 1D-CNN Model for Myocardial Infarction Classification Using 12-Lead ECG Signals. Jurnal Penelitian Pendidikan IPA, 11(3), 1167–1182. https://doi.org/10.29303/jppipa.v11i3.10238
Muttaqin, R. Z., & Sudiana, D. (2024). Design of Realtime Web Application Firewall on Deep Learning-Based to Improve Web Application Security. Jurnal Penelitian Pendidikan IPA, 10(12), 11121–11129. https://doi.org/10.29303/jppipa.v10i12.8346
Nuresa, K. (2024). Analisis Perbandingan Klasifikasi Tumor Otak Menggunakan Deep Learning. IJITECH: Indonesian Journal of Information Technology, 2(1), 16–21. https://doi.org/10.71155/rdgrt890
Nurhidayat, A., Arrosyid, W. A., & Samsinar, R. (2025). Prediksi Tumor Otak Menggunakan Metode Convolutional Neural Network (CNN) dan Algoritma Decision Tree. Seminar Nasional Teknologi & Sains, 4(1), 660–666. https://doi.org/10.29407/d3822f90
Nurlaela, L., Suhanda, Y., Sopian, A., Dewi, C. S., & Syahrial, R. (2025). Pengembangan Framework Data Mining Berbasis Deep Neural Network Dengan Eksplorasi Teknik Transfer Learning Untuk Prediksi Dan Klasifikasi Data. JRIS: Jurnal Rekayasa Informasi Swadharma, 5(1), 132–141. https://doi.org/10.56486/jris.vol5no1.723
Prasetyo, S. Y., & Nabiilah, G. Z. (2023). Perbandingan Model Machine Learning pada Klasifikasi Tumor Otak Menggunakan Fitur Discrete Cosine Transform. Jurnal Teknologi Terpadu, 9(1), 29–34. https://doi.org/10.54914/jtt.v9i1.605
Pratama, M. H. R., Akrom, M., Santosa, A. P., Rosyid, M. R., & Mawaddah, L. (2025). Klasifikasi Otomatis Korosi Menggunakan Convolutional Neural Network dan Transfer Learning dengan Model MobileNetV2. Jurnal Algoritma, 22(1), 138–148. https://doi.org/10.33364/algoritma/v.22-1.2182
Rizki, S. D., & Defit, S. (2024). Texture and Flag Color Extraction in Backpropagation Neural Network Architecture. Jurnal Penelitian Pendidikan IPA, 10(5), 2191–2198. https://doi.org/10.29303/jppipa.v10i5.7146
Rudiansyah, R., & Husein, A. (2024). Klasifikasi Tumor Otak pada gambar Magnetic Resonance Images (MRI) dengan Pendekatan Pembelajaran Mendalam. Data Sciences Indonesia (DSI), 4(1), 62–68. https://doi.org/10.47709/dsi.v4i1.4265
Sadr, H., Nazari, M., Yousefzade-Chabok, S., Emami, H., Rabiei, R., & Ashraf, A. (2025). Enhancing brain tumor classification in MRI images: A deep learning-based approach for accurate classification and diagnosis. Image and Vision Computing, 159. https://doi.org/10.1016/j.imavis.2025.105555
Salmi, M., Atif, D., Oliva, D., Abraham, A., & Ventura, S. (2024). Handling imbalanced medical datasets: review of a decade of research. Artificial Intelligence Review, 57(10), 273. https://doi.org/10.1007/s10462-024-10884-2
Saputro, Y., Arwinto, M. R. A., Susanti, A., & Agustin, T. (2024). Analisis Performa Model Deep Learning VGG16 dan ResNet dalam Klasifikasi Jenis Tumor Otak. In Prosiding Seminar Nasional Amikom Surakarta (Vol. 2, pp. 136–147). Retrieved from https://ojs.amikomsolo.ac.id/index.php/semnasa/article/view/633
Sari, M. W., Sitorus, S. P., & Pane, R. (2025). Implementation of Convolutional Neural Network (CNN) Method in Determining the Level of Ripeness of Mango Fruit Based on Image. Jurnal Penelitian Pendidikan IPA, 11(5), 419–428. https://doi.org/10.29303/jppipa.v11i5.11436
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48. https://doi.org/10.1186/s40537-019-0197-0
Sujon, K. M., Hassan, R., Choi, K., & Samad, M. A. (2025). Accuracy, precision, recall, f1-score, or MCC? empirical evidence from advanced statistics, ML, and XAI for evaluating business predictive models. Journal of Big Data, 12(1), 268. https://doi.org/10.1186/s40537-025-01313-4
Sumardi, T., Robiyana, I., Permana, R., & Suhendra, M. A. (2025). Thermal Image-Based Classification of Okra Maturity: A Comparative Study of CNN, SVM, and LSTM. Jurnal Penelitian Pendidikan IPA, 11(11), 582–589. https://doi.org/10.29303/jppipa.v11i11.12748
Susilo, R. I., Haq, I. B. I., Apriawan, T., Wahyuhadi, J., Puspikawati, S. I., & Ramadhaningtyas, E. M. (2025). Education Regarding Early Detection And Early Treatment Of Brain Tumors In Banyuwangi Regency, Indonesia. Journal of Public Health Research & Community Health Development, 9(1). Retrieved from https://e-journal.unair.ac.id/JPHRECODE/article/download/68478/34156
Tyas, D. L., Rumambi, F. R., Patanduk, A., & Mailangkay, R. C. J. (2025). Klasifikasi Jenis Tumor Otak Melalui Citra MRI dengan Menggunakan Convolutional Neural Network. Informatik: Jurnal Ilmu Komputer, 21(1), 26–34. https://doi.org/10.52958/iftk.v21i1.11095
Umar, R. (2025). Advanced Chicken Breed Identification Using Transfer Learning Techniques with the VGG16 Convolutional Neural Network Architecture. Jurnal Penelitian Pendidikan IPA, 11(7), 152–159. https://doi.org/10.29303/jppipa.v11i7.11870
Velden, B. H., Kuijf, H. J., Gilhuijs, K. G., & Viergever, M. A. (2022). Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Medical Image Analysis, 79, 102470. https://doi.org/10.1016/j.media.2022.102470
Wicaksono, A. B., & Hartato, B. P. (2025). Analisis performa arsitektur cnn inceptionv3 dan vgg16 dalam klasifikasi deteksi kanker otak. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika, 10(2), 938–948. https://doi.org/10.29100/jipi.v10i2.6090
Xu, Y., & Goodacre, R. (2018). On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. Journal of Analysis and Testing, 2(3), 249–262. https://doi.org/10.1007/s41664-018-0068-2
License
Copyright (c) 2026 Nadia Sri Aulia Noprianti Noprianti, Leni Aziyus Fitri

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






