Analysis of the Energy Band Gap of Tin Oxide Thin Layers as Semiconductor Base Materials in Electronic Devices

Authors

Aris Doyan , Susilawati Susilawati , Lalu Muliyadi

DOI:

10.29303/jppipa.v8i6.2657

Published:

2022-12-28

Issue:

Vol. 8 No. 6 (2022): December

Keywords:

Enegy band gap, Tin oxide, Semiconductor, Electronic devices

Research Articles

Downloads

How to Cite

Doyan, A. ., Susilawati, S., & Muliyadi, L. (2022). Analysis of the Energy Band Gap of Tin Oxide Thin Layers as Semiconductor Base Materials in Electronic Devices. Jurnal Penelitian Pendidikan IPA, 8(6), 2772–2777. https://doi.org/10.29303/jppipa.v8i6.2657

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The purpose of this study is to analyze the quality of optical properties such as energy band gap of thin layer of tin oxide doped with aluminum, tin oxide doped with fluorine, tin oxide doped with indium, tin oxide doped with aluminum-fluorine, tin oxide doped with aluminum-indium, and tin oxide doped with aluminum-fluorine-indium. The thin layer was synthesized using the sol-gel spin coating method. The ratio of basic ingredients and doping used in this study was 95:5% and 85:15%. The thin layer that has been formed is then heated at a temperature of 100 and 200 0C. The results of the analysis of optical properties showed that the largest values of direct and indirect energy band gap are in a thin layer of tin oxide doped with indium at a percentage of 95:5% for a temperature of 100 0C, namely 3.62 and 3.92 eV. The lowest values of direct and indirect energy band gap are in a thin layer of tin oxide doped with aluminum-fluorine-indium at a percentage of 85:15% for a temperature of 200 0C, namely 3.36 and 3.51 eV. These results indicate that the resulting energy band gap decreases with increasing doping concentration and sintering temperature. Based on the optical properties obtained, the thin layer can be used as the basic material for semiconductors in electronic devices.

References

Altinkaya, C., Aydin, E., Ugur, E., Isikgor, F. H., Subbiah, A. S., De Bastiani, M., Liu, J., Babayigit, A., Allen, T. G., Laquai, F., Yildiz, A., & De Wolf, S. (2021). Tin Oxide Electron-Selective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells. Advanced Materials, 33(15), 1–32. https://doi.org/10.1002/adma.202005504

Bhattacharya, T. (2022). Applications of Phyto-Nanotechnology for the Treatment of. Materials (Basel), 15(804), 1–32. https://doi.org/10.3390/ma15030804.

Chu, F., Wang, D., Liu, C., Li, L., & Wang, Q. H. (2021). Multi-view 2D/3D switchable display with cylindrical liquid crystal lens array. Crystals, 11(6), 1–10. https://doi.org/10.3390/cryst11060715

Dai, P., Long, J., Sun, Q., Wu, Y., Tan, M., & Lu, S. (2021). Indium Tin Oxide with High Carrier-Collection Capacity and Radiation Resistance for GaInP Solar Cell. Physica Status Solidi (A) Applications and Materials Science, 218(10), 1–7. https://doi.org/10.1002/pssa.202000804

Dou, W., & Tan, Y. (2019). Low-voltage self-assembled indium tin oxide thin-film transistors gated by microporous SiO2 treated by H3PO4. RSC Advances, 9(53), 30715–30719. https://doi.org/10.1039/c9ra07166k

Doyan, A., & Humaini. (2017). Sifat Optik Lapisan Tipis ZnO. Jurnal Pendidikan Fisika Dan Teknologi, 3(1), 34–39. https://doi.org/10.29303/jpft.v3i1.321

Doyan, A., Susilawati, Fitri, S. A., & Ahzan, S. (2017). Crystal Structure Characterization of Thin Layer Zinc Oxide. IOP Conference Series: Materials Science and Engineering, 196(1), 1–6. https://doi.org/10.1088/1757-899X/196/1/012004

Doyan, A., Susilawati, Hakim, S., Muliyadi, L., & Taufik, M. (2020). The effect of annealing temperature thin films indium doped SnO2 to optics properties and material composition. Journal of Physics: Conference Series, 1572(1), 1–8. https://doi.org/10.1088/1742-6596/1572/1/012072

Doyan, A., Susilawati, Hakim, S., Muliyadi, L., Taufik, M., & Nazarudin. (2019). The Effect of Indium Doped SnO2 Thin Films on Optical Properties Prepared by Sol-Gel Spin Coating Technique. Journal of Physics: Conference Series, 1397(1), 1–8. https://doi.org/10.1088/1742-6596/1397/1/012005

Doyan, A., Susilawati, Harjono, A., Azzahra, S., & Taufik, M. (2019). Characterization of TiN Oxide Doping Antimony Thin Layer with Sol- Gel Spin Coating Method for Electronic Device. Materials Science Forum, 966, 30–34. https://doi.org/10.4028/www.scientific.net/MSF.966.30

Doyan, A., Susilawati, Ikraman, N., & Taufik, M. (2018). Characterization of SnO2 Film with Al-Zn Doping Using Sol-Gel Dip Coating Techniques. Journal of Physics: Conference Series, 1011(1), 1–6. https://doi.org/10.1088/1742-6596/1011/1/012015

Doyan, A., Susilawati, & Imawanti, Y. D. (2017). Synthesis and characterization of SnO2 thin layer with a doping aluminum is deposited on quartz substrates. AIP Conference Proceedings, 1801(020005), 1–7. https://doi.org/10.1063/1.4973083

Doyan, A., Susilawati, Imawanti, Y. D., Gunawan, E. R., & Taufik, M. (2018). Characterization Thin Film Nano Particle of Aluminum Tin Oxide (AlTO) as Touch Screen. Journal of Physics: Conference Series, 1097(1), 1–9. https://doi.org/10.1088/1742-6596/1097/1/012009

Doyan, A., Susilawati, Mahardika, I. K., Rizaldi, D. R., & Fatimah, Z. (2022). Structure and optical properties of Titanium Dioxide thin film with mixed Fluorine and Indium doping for solar cell components. Journal of Physics: Conference Series, 2165(1), 1–12. https://doi.org/10.1088/1742-6596/2165/1/012009

Doyan, A., Susilawati, Muhammad, T., Syamsul, H., & Lalu, M. (2021). The optical properties of thin films tin oxide with triple doping (Aluminum, indium, and fluorine) for electronic device. Solid State Phenomena, 317 SSP, 477–482. https://doi.org/10.4028/www.scientific.net/SSP.317.477

Doyan, A., Susilawati, Muliyadi, L., Hakim, S., Munandar, H., & Taufik, M. (2021). The effect of dopant material to optical properties: Energy band gap Tin Oxide thin film. Journal of Physics: Conference Series, 1816(1), 1742–6596. https://doi.org/10.1088/1742-6596/1816/1/012114

Doyan, A., Susilawati, & Munandar, H. (2021). Optical Characteristics of Tin Oxide Thin Films Doped with Indium and Aluminum Using the Sol-Gel Spin Coating Technique. Proceedings of the 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020), 528, 396–403. https://doi.org/10.2991/assehr.k.210305.057

Doyan, A., Susilawati, S., Alam, K., Muliyadi, L., Ali, F., & Kechik, M. M. A. (2021). Synthesis and Characterization of SnO2 Thin Film Semiconductor for Electronic Device Applications. In Jurnal Penelitian Pendidikan IPA (Vol. 7, Issue SpecialIssue, pp. 377–381). https://doi.org/10.29303/jppipa.v7ispecialissue.1270

Doyan, A., Susilawati, S., & Muliyadi, L. (2020). Synthesis of Tin Oxide Thin Layer by Doping Aluminum, Fluorine, and Indium Using Sol-Gel Spin Coating Technique. Jurnal Penelitian Pendidikan IPA, 7(1), 11. https://doi.org/10.29303/jppipa.v7i1.468

Hakim, S., Doyan, A., Susilawati, S., & Muliyadi, L. (2019). Synthesis Thin Films SnO2 with Doping Indium by Sol-gel Spin coating. Jurnal Penelitian Pendidikan IPA, 5(2), 171. https://doi.org/10.29303/jppipa.v5i2.254

Ikraman, N., Doyan, A., & Susilawati, S. (2017). Penumbuhan Film SnO2 Dengan Doping Al-Zn Menggunakan Teknik Sol-Gel Dip Coating. Jurnal Pendidikan Fisika Dan Teknologi, 3(2), 228–231. https://doi.org/10.29303/jpft.v3i2.415

Il Lee, S., Yun, G. J., Kim, J. W., Hanta, G., Liang, K., Kojvic, L., Hui, L. S., Turak, A., & Kim, W. Y. (2019). Improved hole injection for blue phosphorescent organic light-emitting diodes using solution deposited tin oxide nano-particles decorated ITO anodes. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-39451-4

Imawanti, Y. D., Doyan, A., & Gunawan, E. R. (2017). Sintesis Lapisan Tipis (Thin Film) SnO2 DAN SnO2:Al Menggunakan Teknik Sol-Gel Spin Coating pada Substrat Kaca dan Quartz. Jurnal Penelitian Pendidikan IPA, 3(1), 1–9. https://doi.org/10.29303/jppipa.v3i1.49

Karabulut, A., Dere, A., Al-Sehemi, A. G., Al-Ghamdi, A. A., & Yakuphanoglu, F. (2018). Cadmium Oxide:Titanium Dioxide Composite Based Photosensitive Diode. Journal of Electronic Materials, 47(12), 7159–7169. https://doi.org/10.1007/s11664-018-6647-1

Kirtane, A. R., Verma, M., Karandikar, P., Furin, J., Langer, R., & Traverso, G. (2021). Nanotechnology approaches for global infectious disease. Nat. Nanotechnol, 16(April), 369–384. https://doi.org/10.1038/s41565-021-00866-8.

Luo, H., Wang, J., Yuan, L., Tang, H., Wu, L., Jiang, Q., Ren, J., Rao, M., & Yan, K. (2022). High efficiency planar perovskite solar cell by surface disorder removal on mesoporous tin oxide. Surfaces and Interfaces, 28(November), 101584. https://doi.org/10.1016/j.surfin.2021.101584

Mikolášek, M. (2017). Silicon Heterojunction Solar Cells: The Key Role of Heterointerfaces and their Impact on the Performance. Nanostructured Solar Cells, 69–92. https://doi.org/10.5772/65020

Muliyadi, L., Doyan, A., Susilawati, S., & Hakim, S. (2019). Synthesis of SnO2 Thin Layer with a Doping Fluorine by Sol-Gel Spin Coating Method. Jurnal Penelitian Pendidikan IPA, 5(2), 175. https://doi.org/10.29303/jppipa.v5i2.257

Munandar, H., Doyan, A., & Susilawati, S. (2020). Synthesis of SnO2 Thin Coatings by Indium and Aluminum Mixed Doping using the Sol-Gel Spin-Coating Technique. Jurnal Penelitian Pendidikan IPA, 6(2), 152–156. https://doi.org/10.29303/jppipa.v6i2.391

Rana, V. S., Rajput, J. K., Pathak, T. K., & Purohit, L. P. (2019). Cu sputtered Cu/ZnO Schottky diodes on fluorine doped tin oxide substrate for optoelectronic applications. Thin Solid Films, 679, 79–85. https://doi.org/10.1016/j.tsf.2019.04.019

Susilawati, Doyan, A., Muliyadi, L., Hakim, S., & Taufik, M. (2020). The thickness effect to optical properties of SnO2 thin film with doping fluorine. Journal of Physics: Conference Series, 1572(1), 012085. https://doi.org/10.1088/1742-6596/1572/1/012085

Susilawati, Doyan, A., Muliyadi, L., Hakim, S., Taufik, M., & Nazarudin. (2019). Characteristics and Optical Properties of Fluorine Doped SnO2 Thin Film Prepared by a Sol-Gel Spin Coating. Journal of Physics: Conference Series, 1397(1), 1–8. https://doi.org/10.1088/1742-6596/1397/1/012003

Susilawati, S., Doyan, A., Muliyadi, L., & Hakim, S. (2020). Growth of Tin Oxide Thin Film by Aluminum and Fluorine Doping Using Spin Coating Sol-Gel Techniques. Jurnal Penelitian Pendidikan IPA, 6(1), 1–4. https://doi.org/10.29303/jppipa.v6i1.264

Vijayakumar, M. D., Surendhar, G. J., Natrayan, L., Patil, P. P., Ram, P. M. B., & Paramasivam, P. (2022). Evolution and Recent Scenario of Nanotechnology in Agriculture and Food Industries. Journal of Nanomaterials, 2022, 1–17. https://doi.org/10.1155/2022/1280411

Zhang, S., Wang, Q., Li, C., Shi, G., Zhang, L., Wang, X., Yang, Z., & Yang, H. (2021). Fluorescence enhancement of quantum dots from the titanium dioxide/liquid crystals/polymer composite films. Liquid Crystals, 48(3), 322–335. https://doi.org/10.1080/02678292.2020.1782491

Zhang, W., Schneider, J., Chigrinov, V. G., Kwok, H. S., Rogach, A. L., & Srivastava, A. K. (2018). Optically Addressable Photoaligned Semiconductor Nanorods in Thin Liquid Crystal Films for Display Applications. Advanced Optical Materials, 6(16), 1800250. https://doi.org/10.1002/adom.201800250

Zhang, Y., Zhou, L., Liu, Y., Liu, D., Liu, F., Liu, F., Yan, X., Liang, X., Gao, Y., & Lu, G. (2018). Gas sensor based on samarium oxide loaded mulberry-shaped tin oxide for highly selective and sub ppm-level acetone detection. Journal of Colloid and Interface Science, 531, 74–82. https://doi.org/10.1016/j.jcis.2018.07.052

Zhou, J. Y., Bai, J. L., Zhao, H., Yang, Z. Y., Gu, X. Y., Huang, B. Y., Zhao, C. H., Cairang, L., Sun, G. Z., Zhang, Z. X., Pan, X. J., & Xie, E. Q. (2018). Gas sensing enhancing mechanism via doping-induced oxygen vacancies for gas sensors based on indium tin oxide nanotubes. Sensors and Actuators, B: Chemical, 265(2), 273–284. https://doi.org/10.1016/j.snb.2018.03.008

Author Biographies

Aris Doyan, Program Studi Pendidikan Fisika, Universitas Mataram

Susilawati Susilawati, Program Studi Pendidikan Fisika, Universitas Mataram

License

Copyright (c) 2022 Aris Doyan, Susilawati Susilawati, Lalu Muliyadi

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).