Citra Landsat 8 on Environmental Spatial Analysis for Determining the Zone of Mangrove Distribution in Langkat District
DOI:
10.29303/jppipa.v9i11.3950Published:
2023-11-25Issue:
Vol. 9 No. 11 (2023): NovemberKeywords:
Citra Lansat 8, Mangrove Distribution Zone, Spatial AnalysisResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Langkat Regency has the largest mangrove forest in North Sumatra. Lubuk Kertang Langkat Village from 2014 to 2018 there has been an increase in the area of ​​mangrove forest by 69.3 Ha. Mangroves 2014-2016. By collecting data on the pattern of mangrove distribution zones in the mangrove area, it will reduce changes in the area of ​​the mangrove area, so that the possibility of distribution of mangroves in the Langkat Regency area is known. Remote sensing using Citra Landsat 8 is part of the way to determine the distribution of mangroves. The purpose of this study was to examine the distribution of mangrove zones in the Langkat area using Citra Landsat 8. The research results found that there were 18 types of mangrove plants in Langkat district, namely Avicennia marina, Nypa fruticans, Sonneratia alba, Rizophora apiculate, Avicennia officinalis, Avicennia rumphiana, Aegiceras corniculatum, Rizophora rumphiana, Aigeceras hydrophyliacea, Scyhiphora hydrophylicea, Avicenniam marina, Scyphiphora hydrophyliacea, Soneratia alba, Aigeceras corniculatum, Lumnitzera littorea, Rhizophora apiculate, Rhizophora mucronata. the type of mangrove plant that ranks first is Rhizophora where this plant has the highest species density value of all existing mangrove species, which is equal to 900 Ind/400m. Rhizophora is a type of mangrove plant that has a fruit length of 1.9 cm, an average of 52 cm, and a fruit weight of 56 gr. The pattern of distribution of mangrove plants in groups is based on the tendency of mangrove species to inhabit their preferred environment.
References
Aboelnour, M., & Engel, B. A. (2018). Application of remote sensing techniques and geographic information systems to analyze land surface temperature in response to land use/land cover change in Greater Cairo Region, Egypt. Journal of Geographic Information System, 10(1), 57–88. https://doi.org/10.4236/jgis.2018.101003
Adiri, Z., Lhissou, R., El Harti, A., Jellouli, A., & Chakouri, M. (2020). Recent advances in the use of public domain satellite imagery for mineral exploration: A review of Landsat-8 and Sentinel-2 applications. Ore Geology Reviews, 117, 103332. https://doi.org/10.1016/j.oregeorev.2020.103332
Adnyana, I. W. S., & As-syakur, A. R. (2012). Aplikasi Sistem Informasi Geografi Berbasis Data Raster Untuk Pengkelasan Kemampuan Lahan Di Provinsi Bali Dengan Metode Nilai Piksel Pembeda (Application of Geographic Information System (Gis) Based Raster Data to Classify Land Capability in Bali). Jurnal Manusia Dan Lingkungan, 19(1), 21–29. https://doi.org/10.22146/jml.18448
Ali, A. S. O., & Pour, A. B. (2014). Lithological mapping and hydrothermal alteration using Landsat 8 data: a case study in ariab mining district, red sea hills, Sudan. International Journal of Basic and Applied Sciences, 3(3), 199. https://doi.org/10.14419/ijbas.v3i3.2821
Barrachina-Munoz, S., Wilhelmi, F., & Bellalta, B. (2019). Dynamic channel bonding in spatially distributed high-density WLANs. IEEE Transactions on Mobile Computing, 19(4), 821–835. https://doi.org/10.1109/TMC.2019.2899835
Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems. Oxford University Press, USA.
Castellanos-Basto, B., Herrera-Silveira, J., Bataller, É., & Rioja-Nieto, R. (2021). Local Drivers Associated to Temporal Spectral Response of Chlorophyll-a in Mangrove Leaves. Sustainability, 13(9), 4636. https://doi.org/10.3390/su13094636
Chuvieco, E. (2020). Fundamentals of satellite remote sensing: An environmental approach. CRC press.
Cressie, N. (2015). Statistics for spatial data. John Wiley & Sons.
Gao, F., Anderson, M. C., Zhang, X., Yang, Z., Alfieri, J. G., Kustas, W. P., Mueller, R., Johnson, D. M., & Prueger, J. H. (2017). Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment, 188, 9–25. https://doi.org/10.1016/j.rse.2016.11.004
Gumma, M. K., Thenkabail, P. S., Hideto, F., Nelson, A., Dheeravath, V., Busia, D., & Rala, A. (2011). Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remotesensing data. Remote Sensing, 3, 816–835. https://doi.org/10.3390/rs3040816
Hafni, R. (2016). Analisis Dampak Rehabilitasi Hutan Mangrove Terhadap Pendapatan Masyarakat Desa Lubuk Kertang Kabupaten Langkat, Sumatera Utara. Universitas Muhammadiyah. Retrieved from https://core.ac.uk/download/pdf/290536391.pdf
Irni, J. (2022). Analisis Pola Sebaran Spasial Beberapa Jenis Pohon di Hutan Penelitian Darmaga. Jurnal Agroindustri, Agribisnis, Dan Agroteknologi, 1(1), 18–27. Retrieved from https://akses.ptki.ac.id/jurnal/index.php/agrotristek/article/view/18
Lasaiba, M. A., & Saud, A. W. (2022). Pemanfaatan Citra Landsat 8 Oli/Tirs Untuk Identifikasi Kerapatan Vegetasi Menggunakan Metode Normalized Difference Vegetation Index (Ndvi) Di Kota Ambon. JURNAL GEOGRAFI: Geografi Dan Pengajarannya, 20(1), 53-65. https://doi.org/10.26740/jggp.v20n1.p53-65
MacArthur, R. H. (1984). Geographical ecology: patterns in the distribution of species. Princeton University Press.
Mancino, G., Ferrara, A., Padula, A., & Nolè, A. (2020). Cross-comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) derived vegetation indices in a Mediterranean environment. Remote Sensing, 12(2), 291. https://doi.org/10.3390/rs12020291
Matatula, J., Afandi, A. Y., & Wirabuana, P. (2021). A comparison of stand structure, species diversity and aboveground biomass between natural and planted mangroves in Sikka, East Nusa Tenggara, Indonesia. Biodiversitas Journal of Biological Diversity, 22(3). https://doi.org/10.13057/biodiv/d220303
Phiri, D., & Morgenroth, J. (2017). Developments in Landsat land cover classification methods: A review. Remote Sensing, 9(9), 967. https://doi.org/10.3390/rs9090967
Prahasta, E. (2009). Sistem Informasi Geografis: Konsep-Konsep Dasar (Perspektif Geodesi & Geomatika). Bandung: Informatika.
Purwaningsih, S., Salamah, E., Yudha, A., Sukarno, P., & Deskawati, E. (2013). Aktivitas antioksidan dari buah mangrove (Rhizophora mucronata Lamk.) pada suhu yang berbeda. Jurnal Pengolahan Hasil Perikanan Indonesia, 16, 3. https://doi.org/10.17844/jphpi.v16i3.8057
Rahmadi, Mt., Suciani., A., & Auliani, N. (2020). Analisis Perubahan Luasan Hutan Mangrove Menggunakan Citra Landsat 8 OLI di Desa Lubuk Kertang Langkat. Media Komunikasi Geografi, 21(2). https://doi.org/10.23887/mkg.v21i2.24197
Restu, R., & Damanik, M. R. S. (2012). Kajian Perubahan Tutupan Mangrove Menggunakan Citra Landsat TM Di Kabupaten Langkat Propinsi Sumatera Utara. Jurnal Geografi, 4(2), 69–78. https://doi.org/10.24114/jg.v4i2.8069
Schabenberger, O., & Gotway, C. A. (2017). Statistical methods for spatial data analysis. CRC press.
Schott, J. R. (2007). Remote sensing: the image chain approach. Oxford University Press.
Shahrokhnia, M. H., & Ahmadi, S. H. (2019). Remotely sensed spatial and temporal variations of vegetation indices subjected to rainfall amount and distribution properties. In Spatial Modeling in GIS and R for Earth and Environmental Sciences, 21–53. https://doi.org/10.1016/B978-0-12-815226-3.00002-8
Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430–444. Retrieved from https://ieeexplore.ieee.org/abstract/document/1576816/
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48. https://doi.org/10.1186/s40537-019-0197-0
Somvanshi, S. S., Kunwar, P., Tomar, S., & Singh, M. (2018). Comparative statistical analysis of the quality of image enhancement techniques. International Journal of Image and Data Fusion, 9(2), 131–151. https://doi.org/10.1080/19479832.2017.1355336
Tran, T. V, Reef, R., & Zhu, X. (2022). A review of spectral indices for mangrove remote sensing. Remote Sensing, 14(19), 4868. https://doi.org/10.3390/rs14194868
Victório, C. P., Dos Santos, M. S., de Mello, M. C., Bento, J. P. S. P., da Costa Souza, M., Simas, N. K., & do Carmo de Oliveira Arruda, R. (2020). The presence of heavy metals in Avicennia schaueriana Stapf & Leechman ex Moldenke leaf and epicuticular wax from different mangroves around Sepetiba Bay, Rio de Janeiro, Brazil. Environmental Science and Pollution Research, 27, 23714–23729. https://doi.org/10.1007/s11356-020-08606-6
Author Biographies
Nurhasanah, Universitas Terbuka, Indonesia
A. Hadian Pratama Hamzah, Universitas Terbuka, Indonesia
Sri Harijati, Universitas Terbuka, Indonesia
License
Copyright (c) 2023 Nurhasanah, A. Hadian Pratama Hamzah, Sri Harijati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).