Vol. 9 No. 11 (2023): November
Open Access
Peer Reviewed

Development of an Android-based Machine Learning Student Problem Identification Tool Application at YPT Banjarmasin VHS

Authors

DOI:

10.29303/jppipa.v9i11.4420

Published:

2023-11-25

Downloads

Abstract

The era of the 5.0 Industrial Revolution demands that we develop automation and digitalization technologies in various aspects of life, including education. Even Guidance and Counseling teachers who manually analyze counseling instrument items need assistance in swiftly and accurately analyzing instruments for hundreds of students. This research aims to support counselors in analyzing the Student Problem Identification Tool Instrument, which consists of 225 items, through student’s Android devices, thereby enabling the prompt resolution of student issues. Through the stages of Research and Development (R&D), the Student Problem Identification Tool Application is developed using the Multinomial Logistic Regression method within Machine Learning. This is achieved by replicating the capabilities of counselors based on analysis data from various previous instances of the Student Problem Identification Tool Instrument. Research outcomes reveal that the application achieves an accuracy rate of 100% when compared to manual analysis by counselors and application-based analysis for 30 students. The average performance test result is 85.00%, and the feasibility test result is 96.30%, categorizing it as "Highly Feasible." In conclusion, Machine Learning facilitates the effective and efficient analysis of extensive data when supported by quality training data and the appropriate method selection for problem-solving

Keywords:

Android-based Machine Learning Multinomial Logistic Regression Student Problem Identification Tool

References

Abuhaija, B., Alloubani, A., Almatari, M., Jaradat, G. M., Abdallah, H. B., Abualkishik, A. M., & Alsmadi, M. K. (2023). A comprehensive study of machine learning for predicting cardiovascular disease using Weka and SPSS tools. International Journal of Electrical and Computer Engineering (IJECE), 13(2),1891-1902.

http://doi.org/10.11591/ijece.v13i2.pp1891-1902

Adelia, M., Widowati, A., Jumadi, J., & Lafifa, F. (2023). Innovation of Media Science "Sensing System" with Android Platform: Feasibility Test. Jurnal Penelitian Pendidikan IPA, 9(2), 459–464. https://doi.org/10.29303/jppipa.v9i2.1750

Almazaydeh, L., Alsafasfeh, M., Alsalameen, R., & Alsharari, S. (2022). Formalization of the prediction and ranking of software development life cycle models. International Journal of Electrical and Computer Engineering (IJECE), 12(1),534-540. http://doi.org/10.11591/ijece.v12i1.pp534-540

Anshari, A.F.A. (2019). Manajemen Program Bimbingan Dan Konseling Di Sekolah Menengah Kejuruan (SMK) (Studi Deskriptif pada Sekolah Menengah Kejuruan). Visipena, 10(1), 66-77. https://doi.org/10.46244/visipena.v10i1.491

Azahari, M. T., Lbs, A. I., Saleha, D., Kurniati, M., Komariah, S., & Stariah, S. (2022). Pelayanan, Manajemen, dan Sarana Prasarana Bimbingan Konseling Di SMP YPAK PT. Perkebunan Nusantara III (Persero) Sei Karang-Galang. Jurnal Pendidikan Dan Konseling (JPDK), 4(4), 501–509. https://doi.org/10.31004/jpdk.v4i4.5278

Bakhri, S., Tsuroya, N. H., & Pratama, Y. (2023). Development of Learning Media with QuickAppNinja Android-Based (Guess Image & Find Words) to Increase Elementary School Teachers’ Digital Literacy. Jurnal Penelitian Pendidikan IPA, 9(7), 4879–4884. https://doi.org/10.29303/jppipa.v9i7.3574

Djollong, A. F. (2014). Tehnik Pelaksanaan Penelitian Kuantitatif. Istiqra`: Jurnal Pendidikan Dan Pemikiran Islam, 2(1), 86–100. Retrieved from

http://jurnal.umpar.ac.id/index.php/istiqra/article/view/224

Elhaloui, L., Filali, S. E., Benlahmer, E. H., Tabaa, M., Tace, Y., & Rida, N. (2023). Machinelearning forinternet of thingsclassification usingnetwork traffic parameters. International Journal of Electrical and Computer Engineering (IJECE), 13(3), 3449-3463. http://doi.org/10.11591/ijece.v13i3.pp3449-3463

Evangelista, E. D. L.,&Sy, B. D. (2022). Anapproach for improved students’performance predictionusing homogeneous and heterogeneous ensemble methods. International Journal of Electrical and Computer Engineering (IJECE), 12(5), 5226-5235. http://doi.org/10.11591/ijece.v12i5.pp5226-5235

Fahrizal, F., Reynaldi, F.,& Hikmah, N. (2020). Implementasi Machine Learning pada Sistem PETS Identification menggunakan Python berbasis ubuntu. JISICOM, 4(1), 86-91.Retrieved from https://journal.stmikjayakarta.ac.id/index.php/jisicom/article/view/212

Fitri, R. ., & Yarni, L. (2022). Gambaran Kemandirian Remaja dari Keluarga Single Parent (Studi Kasus pada Remaja di RT 008 RW 003 Kelurahan Perawang). Jurnal Pendidikan Dan Konseling (JPDK), 4(5), 3467–3472. https://doi.org/10.31004/jpdk.v4i5.7160

Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression. New York: John Wiley and Sons, Inc. https://doi.org/10.1002/0471722146

Ifdil, I., Ilyas, A., Churnia, E., Erwinda, L., Zola, N., Fadli, R., Sari, A., & Refnadi, R. (2017). Pengolahan Alat Ungkap Masalah (AUM) dengan Menggunakan Komputer Bagi Konselor. Jurnal Aplikasi IPTEK Indonesia, 1(1), 17-24.

https://doi.org/10.24036/4.113

Indahsari, H. K., Suyanta, S., Yusri, H., Khaerunnisa, N., & Astuti, S. R. D.(2023). Analysis of the Use of Android-Based Edusan Learning Media on Students’ ICT Literacy Skills. Jurnal Penelitian Pendidikan IPA, 9(5), 2312–2318. https://doi.org/10.29303/jppipa.v9i5.2808

Irwanto, I. (2021). Link and Match Pendidikan Kejuruan dengan Dunia Usaha dan Industri di Indonesia. Jurnal Inovasi Penelitian, 2(2), 549-562. https://doi.org/10.47492/jip.v2i2.714

Kaewchada, S., On, S. R., Kuhapong, U., & In, K. S. (2023). Random forest model for forecasting vegetable prices: a case study in Nakhon Si Thammarat Province, Thailand. International Journal of Electrical and Computer Engineering (IJECE), 13(5),5265-5272. http://doi.org/10.11591/ijece.v13i5.pp5265-5272

Kotha, U. M., Gaddam, H., Siddenki, D. R., & Saleti, S. (2023). A comparison of various machine learning algorithms and execution of flask deployment on essay grading. International Journal of Electrical and Computer Engineering (IJECE), 13(3), 2990-2998. http://doi.org/10.11591/ijece.v13i3.pp2990-2998

Kriswantara, B., & Sadikin, R. (2022). Machine Learning Used Car Price Prediction with Random Forest Regressor Model. JISICOM (Journal Of Information System, Informatics And Computing), 6(1), 40-49. https://doi.org/10.52362/jisicom.v6i1.752

Ntobuo, N. E., Amali, L. M. K., Paramata, D. D., & Yunus, M. (2023). The Effect of Implementing the Android-Based Jire Collaborative Learning Model on Momentum and Impulse Materials to Improve Student Learning Outcomes. Jurnal Penelitian Pendidikan IPA, 9(2), 491–497. https://doi.org/10.29303/jppipa.v9i2.2924

Oktarina, R., Fitria, Y., Ahmad, S., & Zen, Z. (2023). Development of STEM-Oriented E-Modules to Improve Science Literacy Ability of Elementary School Students. Jurnal Penelitian Pendidikan IPA, 9(7), 5460–5465. https://doi.org/10.29303/jppipa.v9i7.4503

Özdemir, A., Yavuz, U., & Dael, F. A. (2019). Performance evaluation of different classification techniques using different datasets.International Journal of Electrical and Computer Engineering (IJECE), 9(5), 3584-3590.

http://doi.org/10.11591/ijece.v9i5.pp3584-3590

Patel, P., & Thakkar, A. (2020). The upsurge of deep learning for computer vision applications. International Journal of Electrical and Computer Engineering (IJECE), 10(1), 538-548. http://doi.org/10.11591/ijece.v10i1.pp538-548

Pioke, F., Olilingo, F. Z., Saleh, S. E., Alam, H. V., Pakaya, A.R., Panigoro, M., & Hafid, R. (2023). Development of Android-Based Learning Media. Jurnal Penelitian Pendidikan IPA, 9(7), 5584–5595. https://doi.org/10.29303/jppipa.v9i7.3982

Pressman, R. S., & Maxim, B. R. (2015). Software Enginering A Pratitioner's Approach 8th. New York: McGraw-Hill Book.

Putri, A. C., Sembiring, A. P. D., Rambe, A., & Fitri, A. L.(2022). Pemanfaatan Aum Umum dan Aum Ptsdl Bagi Guru BK. Jurnal Pendidikan Dan Konseling (JPDK), 4(4), 4916–4919. https://doi.org/10.31004/jpdk.v4i4.6255

Rihyanti, E., & Yanti, S. (2020). Pembuatan Aplikasi Mobile Learning Informasi Pertolongan Pasien Positif COVID-19 berbasis Android. JISICOM, 4(1), 122-133.Retrieved from https://journal.stmikjayakarta.ac.id/index.php/jisicom/article/view/217

Roihan, A., Sunarya, P.A., & Rafika, A.S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review Paper. IJCIT, 5(1), 75-82.

https://doi.org/10.31294/ijcit.v5i1.7951

Rosiani, B. N., Gunayasa, I. B. K., & Saputra, H. H. (2023). Layanan Orientasi Tentang Tata Tertib dan Perilaku Disiplin Siswa. Journal of Classroom Action Research, 5(1), 171–177. https://doi.org/10.29303/jcar.v5i1.2869

Sasmitha, L. D., Hadiprayitno, G., Ilhamdi, M. L., & Jufri, A. W. (2023). Pengaruh Media Pembelajaran Berbasis Android terhadap Hasil Belajar dan Keterampilan Proses Sains Siswa. Journal of Classroom Action Research, 5(SpecialIssue), 292–298. https://doi.org/10.29303/jcar.v5iSpecialIssue.4623

Setyana, M.S., & Purwoko, B. (2018). Pengembangan Software Aplikasi Alat Ungkap Masalah berbasis Android untuk Siswa Kelas X SMAN 1 Gedangan. Jurnal Bimbingan dan Konseling UNESA, 8(2).Retrieved from https://ejournal.unesa.ac.id/index.php/jurnal-bk-unesa/article/view/23458

Slimani, I., Slimani, N., Achchab, S., Saber, M., Farissi, I. E., Sbiti, N., & Mustapha, A. (2022). Automated machine learning: the new data sciencechallenge. International Journal of Electrical and Computer Engineering (IJECE), 12(4),4243-4252. http://doi.org/10.11591/ijece.v12i4.pp4243-4252

Susanto, L. H., Rostikawati, R. T., Novira, R., Sa’diyah, R., Istikomah, I., & Ichsan, I. Z. (2022). Development of Biology Learning Media Based on Android to Improve Students Understanding. Jurnal Penelitian Pendidikan IPA, 8(2), 541–547. https://doi.org/10.29303/jppipa.v8i2.1334

Tiyar, R. I., & Fudholi, D. H. (2021). Kajian Pengaruh Dataset dan bias Dataset terhadap Performa Akurasi Deteksi Objek. PETIR, 14(2), 258-268. https://doi.org/10.33322/petir.v14i2.1350

Trisnawati, Karma, I. N., & Wijandono, I. S. (2023). Analisis Strategi Guru Dalam Menanamkan Nilai Pendidikan Karakter Pada Siswa. Journal of Classroom Action Research, 5(SpecialIssue). Retrieved from https://www.jppipa.unram.ac.id/index.php/jcar/article/view/2909

Winarno, W., Muhtadi, Y., & Aldiya, M. A. (2019). Application of Learning Management Using Non-test Instrument to Improve the Quality of Education. APTISI Transactions on Management (ATM), 3(1), 46–56. https://doi.org/10.33050/atm.v3i1.831

Zahidi, Y., Younoussi, Y. E., & Amrani, Y. A. (2021). Different valuabletoolsforArabicsentimentanalysis:acomparative evaluation. International Journal of Electrical and Computer Engineering (IJECE), 11(1), 753-762. http://doi.org/10.11591/ijece.v11i1.pp753-762

Author Biographies

Muhammad Arisandy Rizky, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Handaru Jati, Yogyakarta State University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Rizky, M. A., & Jati, H. . (2023). Development of an Android-based Machine Learning Student Problem Identification Tool Application at YPT Banjarmasin VHS. Jurnal Penelitian Pendidikan IPA, 9(11), 9210–9217. https://doi.org/10.29303/jppipa.v9i11.4420