Development of an Android-based Machine Learning Student Problem Identification Tool Application at YPT Banjarmasin VHS
DOI:
10.29303/jppipa.v9i11.4420Published:
2023-11-25Downloads
Abstract
The era of the 5.0 Industrial Revolution demands that we develop automation and digitalization technologies in various aspects of life, including education. Even Guidance and Counseling teachers who manually analyze counseling instrument items need assistance in swiftly and accurately analyzing instruments for hundreds of students. This research aims to support counselors in analyzing the Student Problem Identification Tool Instrument, which consists of 225 items, through student’s Android devices, thereby enabling the prompt resolution of student issues. Through the stages of Research and Development (R&D), the Student Problem Identification Tool Application is developed using the Multinomial Logistic Regression method within Machine Learning. This is achieved by replicating the capabilities of counselors based on analysis data from various previous instances of the Student Problem Identification Tool Instrument. Research outcomes reveal that the application achieves an accuracy rate of 100% when compared to manual analysis by counselors and application-based analysis for 30 students. The average performance test result is 85.00%, and the feasibility test result is 96.30%, categorizing it as "Highly Feasible." In conclusion, Machine Learning facilitates the effective and efficient analysis of extensive data when supported by quality training data and the appropriate method selection for problem-solving
Keywords:
Android-based Machine Learning Multinomial Logistic Regression Student Problem Identification ToolReferences
Abuhaija, B., Alloubani, A., Almatari, M., Jaradat, G. M., Abdallah, H. B., Abualkishik, A. M., & Alsmadi, M. K. (2023). A comprehensive study of machine learning for predicting cardiovascular disease using Weka and SPSS tools. International Journal of Electrical and Computer Engineering (IJECE), 13(2),1891-1902.
http://doi.org/10.11591/ijece.v13i2.pp1891-1902
Adelia, M., Widowati, A., Jumadi, J., & Lafifa, F. (2023). Innovation of Media Science "Sensing System" with Android Platform: Feasibility Test. Jurnal Penelitian Pendidikan IPA, 9(2), 459–464. https://doi.org/10.29303/jppipa.v9i2.1750
Almazaydeh, L., Alsafasfeh, M., Alsalameen, R., & Alsharari, S. (2022). Formalization of the prediction and ranking of software development life cycle models. International Journal of Electrical and Computer Engineering (IJECE), 12(1),534-540. http://doi.org/10.11591/ijece.v12i1.pp534-540
Anshari, A.F.A. (2019). Manajemen Program Bimbingan Dan Konseling Di Sekolah Menengah Kejuruan (SMK) (Studi Deskriptif pada Sekolah Menengah Kejuruan). Visipena, 10(1), 66-77. https://doi.org/10.46244/visipena.v10i1.491
Azahari, M. T., Lbs, A. I., Saleha, D., Kurniati, M., Komariah, S., & Stariah, S. (2022). Pelayanan, Manajemen, dan Sarana Prasarana Bimbingan Konseling Di SMP YPAK PT. Perkebunan Nusantara III (Persero) Sei Karang-Galang. Jurnal Pendidikan Dan Konseling (JPDK), 4(4), 501–509. https://doi.org/10.31004/jpdk.v4i4.5278
Bakhri, S., Tsuroya, N. H., & Pratama, Y. (2023). Development of Learning Media with QuickAppNinja Android-Based (Guess Image & Find Words) to Increase Elementary School Teachers’ Digital Literacy. Jurnal Penelitian Pendidikan IPA, 9(7), 4879–4884. https://doi.org/10.29303/jppipa.v9i7.3574
Djollong, A. F. (2014). Tehnik Pelaksanaan Penelitian Kuantitatif. Istiqra`: Jurnal Pendidikan Dan Pemikiran Islam, 2(1), 86–100. Retrieved from
http://jurnal.umpar.ac.id/index.php/istiqra/article/view/224
Elhaloui, L., Filali, S. E., Benlahmer, E. H., Tabaa, M., Tace, Y., & Rida, N. (2023). Machinelearning forinternet of thingsclassification usingnetwork traffic parameters. International Journal of Electrical and Computer Engineering (IJECE), 13(3), 3449-3463. http://doi.org/10.11591/ijece.v13i3.pp3449-3463
Evangelista, E. D. L.,&Sy, B. D. (2022). Anapproach for improved students’performance predictionusing homogeneous and heterogeneous ensemble methods. International Journal of Electrical and Computer Engineering (IJECE), 12(5), 5226-5235. http://doi.org/10.11591/ijece.v12i5.pp5226-5235
Fahrizal, F., Reynaldi, F.,& Hikmah, N. (2020). Implementasi Machine Learning pada Sistem PETS Identification menggunakan Python berbasis ubuntu. JISICOM, 4(1), 86-91.Retrieved from https://journal.stmikjayakarta.ac.id/index.php/jisicom/article/view/212
Fitri, R. ., & Yarni, L. (2022). Gambaran Kemandirian Remaja dari Keluarga Single Parent (Studi Kasus pada Remaja di RT 008 RW 003 Kelurahan Perawang). Jurnal Pendidikan Dan Konseling (JPDK), 4(5), 3467–3472. https://doi.org/10.31004/jpdk.v4i5.7160
Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression. New York: John Wiley and Sons, Inc. https://doi.org/10.1002/0471722146
Ifdil, I., Ilyas, A., Churnia, E., Erwinda, L., Zola, N., Fadli, R., Sari, A., & Refnadi, R. (2017). Pengolahan Alat Ungkap Masalah (AUM) dengan Menggunakan Komputer Bagi Konselor. Jurnal Aplikasi IPTEK Indonesia, 1(1), 17-24.
https://doi.org/10.24036/4.113
Indahsari, H. K., Suyanta, S., Yusri, H., Khaerunnisa, N., & Astuti, S. R. D.(2023). Analysis of the Use of Android-Based Edusan Learning Media on Students’ ICT Literacy Skills. Jurnal Penelitian Pendidikan IPA, 9(5), 2312–2318. https://doi.org/10.29303/jppipa.v9i5.2808
Irwanto, I. (2021). Link and Match Pendidikan Kejuruan dengan Dunia Usaha dan Industri di Indonesia. Jurnal Inovasi Penelitian, 2(2), 549-562. https://doi.org/10.47492/jip.v2i2.714
Kaewchada, S., On, S. R., Kuhapong, U., & In, K. S. (2023). Random forest model for forecasting vegetable prices: a case study in Nakhon Si Thammarat Province, Thailand. International Journal of Electrical and Computer Engineering (IJECE), 13(5),5265-5272. http://doi.org/10.11591/ijece.v13i5.pp5265-5272
Kotha, U. M., Gaddam, H., Siddenki, D. R., & Saleti, S. (2023). A comparison of various machine learning algorithms and execution of flask deployment on essay grading. International Journal of Electrical and Computer Engineering (IJECE), 13(3), 2990-2998. http://doi.org/10.11591/ijece.v13i3.pp2990-2998
Kriswantara, B., & Sadikin, R. (2022). Machine Learning Used Car Price Prediction with Random Forest Regressor Model. JISICOM (Journal Of Information System, Informatics And Computing), 6(1), 40-49. https://doi.org/10.52362/jisicom.v6i1.752
Ntobuo, N. E., Amali, L. M. K., Paramata, D. D., & Yunus, M. (2023). The Effect of Implementing the Android-Based Jire Collaborative Learning Model on Momentum and Impulse Materials to Improve Student Learning Outcomes. Jurnal Penelitian Pendidikan IPA, 9(2), 491–497. https://doi.org/10.29303/jppipa.v9i2.2924
Oktarina, R., Fitria, Y., Ahmad, S., & Zen, Z. (2023). Development of STEM-Oriented E-Modules to Improve Science Literacy Ability of Elementary School Students. Jurnal Penelitian Pendidikan IPA, 9(7), 5460–5465. https://doi.org/10.29303/jppipa.v9i7.4503
Özdemir, A., Yavuz, U., & Dael, F. A. (2019). Performance evaluation of different classification techniques using different datasets.International Journal of Electrical and Computer Engineering (IJECE), 9(5), 3584-3590.
http://doi.org/10.11591/ijece.v9i5.pp3584-3590
Patel, P., & Thakkar, A. (2020). The upsurge of deep learning for computer vision applications. International Journal of Electrical and Computer Engineering (IJECE), 10(1), 538-548. http://doi.org/10.11591/ijece.v10i1.pp538-548
Pioke, F., Olilingo, F. Z., Saleh, S. E., Alam, H. V., Pakaya, A.R., Panigoro, M., & Hafid, R. (2023). Development of Android-Based Learning Media. Jurnal Penelitian Pendidikan IPA, 9(7), 5584–5595. https://doi.org/10.29303/jppipa.v9i7.3982
Pressman, R. S., & Maxim, B. R. (2015). Software Enginering A Pratitioner's Approach 8th. New York: McGraw-Hill Book.
Putri, A. C., Sembiring, A. P. D., Rambe, A., & Fitri, A. L.(2022). Pemanfaatan Aum Umum dan Aum Ptsdl Bagi Guru BK. Jurnal Pendidikan Dan Konseling (JPDK), 4(4), 4916–4919. https://doi.org/10.31004/jpdk.v4i4.6255
Rihyanti, E., & Yanti, S. (2020). Pembuatan Aplikasi Mobile Learning Informasi Pertolongan Pasien Positif COVID-19 berbasis Android. JISICOM, 4(1), 122-133.Retrieved from https://journal.stmikjayakarta.ac.id/index.php/jisicom/article/view/217
Roihan, A., Sunarya, P.A., & Rafika, A.S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review Paper. IJCIT, 5(1), 75-82.
https://doi.org/10.31294/ijcit.v5i1.7951
Rosiani, B. N., Gunayasa, I. B. K., & Saputra, H. H. (2023). Layanan Orientasi Tentang Tata Tertib dan Perilaku Disiplin Siswa. Journal of Classroom Action Research, 5(1), 171–177. https://doi.org/10.29303/jcar.v5i1.2869
Sasmitha, L. D., Hadiprayitno, G., Ilhamdi, M. L., & Jufri, A. W. (2023). Pengaruh Media Pembelajaran Berbasis Android terhadap Hasil Belajar dan Keterampilan Proses Sains Siswa. Journal of Classroom Action Research, 5(SpecialIssue), 292–298. https://doi.org/10.29303/jcar.v5iSpecialIssue.4623
Setyana, M.S., & Purwoko, B. (2018). Pengembangan Software Aplikasi Alat Ungkap Masalah berbasis Android untuk Siswa Kelas X SMAN 1 Gedangan. Jurnal Bimbingan dan Konseling UNESA, 8(2).Retrieved from https://ejournal.unesa.ac.id/index.php/jurnal-bk-unesa/article/view/23458
Slimani, I., Slimani, N., Achchab, S., Saber, M., Farissi, I. E., Sbiti, N., & Mustapha, A. (2022). Automated machine learning: the new data sciencechallenge. International Journal of Electrical and Computer Engineering (IJECE), 12(4),4243-4252. http://doi.org/10.11591/ijece.v12i4.pp4243-4252
Susanto, L. H., Rostikawati, R. T., Novira, R., Sa’diyah, R., Istikomah, I., & Ichsan, I. Z. (2022). Development of Biology Learning Media Based on Android to Improve Students Understanding. Jurnal Penelitian Pendidikan IPA, 8(2), 541–547. https://doi.org/10.29303/jppipa.v8i2.1334
Tiyar, R. I., & Fudholi, D. H. (2021). Kajian Pengaruh Dataset dan bias Dataset terhadap Performa Akurasi Deteksi Objek. PETIR, 14(2), 258-268. https://doi.org/10.33322/petir.v14i2.1350
Trisnawati, Karma, I. N., & Wijandono, I. S. (2023). Analisis Strategi Guru Dalam Menanamkan Nilai Pendidikan Karakter Pada Siswa. Journal of Classroom Action Research, 5(SpecialIssue). Retrieved from https://www.jppipa.unram.ac.id/index.php/jcar/article/view/2909
Winarno, W., Muhtadi, Y., & Aldiya, M. A. (2019). Application of Learning Management Using Non-test Instrument to Improve the Quality of Education. APTISI Transactions on Management (ATM), 3(1), 46–56. https://doi.org/10.33050/atm.v3i1.831
Zahidi, Y., Younoussi, Y. E., & Amrani, Y. A. (2021). Different valuabletoolsforArabicsentimentanalysis:acomparative evaluation. International Journal of Electrical and Computer Engineering (IJECE), 11(1), 753-762. http://doi.org/10.11591/ijece.v11i1.pp753-762
License
Copyright (c) 2023 Muhammad Arisandy Rizky

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






