Vol. 9 No. 11 (2023): November
Open Access
Peer Reviewed

Seasonal and Diurnal Variation of Lightning Over Java Region and Its Relationship with Aerosol

Authors

Ahmad Rizqy Shubri , Mutya Vonnisa , Marzuki Marzuki

DOI:

10.29303/jppipa.v9i11.4784

Published:

2023-11-25

Downloads

Abstract

This study discusses the influence of aerosols on lightning on Java Island using monthly and diurnal observation data from the Tropical Rainfall Measuring Mission (TRMM) for 16 years (1998 - 2013). Aerosol Optical Depth (AOD) was obtained from The Modern Era Retrospective Analysis for Research and Applications version 2 (MERRA-2). Aerosol and lightning data are grouped into rainy (December-January-February) and dry (June-July-August) seasons and diurnal data grouped per 3 hours. The intensity of lightning strikes in the western part of Java Island, such as Jakarta and Banten, is higher than the eastern region, in accordance with the aerosol distribution pattern. The influence of aerosols and lightning in the rainy and dry seasons is relatively stable. However, influence of aerosols on lightning diurnally changes significantly. The strongest correlation between aerosol and lightning was recorded in the afternoon (r = 0.8) and evening (r = 0.9). Although the influence of aerosols on radiation reaches a saturation point during the day, the movement of land and sea breezes plays a dominant role. At night, the influence of aerosols on surface temperature is weakened due to the absence of solar radiation, so aerosols help the electrification of clouds through the formation of ice crystals.

Keywords:

Aerosol Java island Lightning

References

Aldrian, E., & Dwi Susanto, R. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452. https://doi.org/10.1002/joc.950

Altaratz, O., Kucienska, B., Kostinski, A., Raga, G. B., & Koren, I. (2017). Global association of aerosol with flash density of intense lightning. Environmental Research Latters, 12, 114037. https://doi.org/10.1088/1748-9326/aa922b

BPS. (2021). Hasil Sensus Penduduk 2020. Retrieved from https://sensus.bps.go.id/main/index/sp2020

Chen, T., Li, Z., A. Kahn, R., Zhao, C., Rosenfeld, D., Guo, J., Han, W., & Chen, D. (2021). Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China. Atmospheric Chemistry and Physics, 21(8), 6199–6220. https://doi.org/10.5194/acp-21-6199-2021

Dayeh, M. A., Farahat, A., Ismail-Aldayeh, H., & Abuelgasim, A. (2021). Effects of aerosols on lightning activity over the Arabian Peninsula. Atmospheric Research, 261, 105723. https://doi.org/10.1016/j.atmosres.2021.105723

Dewan, A., Ongee, E. T., Rafiuddin, M., Rahman, M. M., & Mahmood, R. (2018). Lightning activity associated with precipitation and CAPE over Bangladesh. International Journal of Climatology, 38(4), 1649–1660. https://doi.org/10.1002/joc.5286

Gautam, A. S., Joshi, A., Chandra, S., Dumka, U. C., Siingh, D., & Singh, R. P. (2022). Relationship between Lightning and Aerosol Optical Depth over the Uttarakhand Region in India: Thermodynamic Perspective. Urban Science, 6(4), 70. https://doi.org/10.3390/urbansci6040070

Hidayat, S., & Ishii, M. (1999). Diurnal variation of lightning characteristics around Java Island. Journal of Geophysical Research Atmospheres, 104(D20),24449–24454. https://doi.org/10.1029/1999JD900769

Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., & Rudich, Y. (2005). The effect of smoke , dust , and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proceedings of the National Academy of Sciences, 102(32), 11207–11212. https://doi.org/10.1073/pnas.050519110

Kusumaningtyas, S. D. A., Tonokura, K., Aldrian, E., Giles, D. M., Holben, B. N., Gunawan, D., Lestari, P., & Iriana, W. (2022). Aerosols optical and radiative properties in Indonesia based on AERONET version 3. Atmospheric Environment, 282(2), 119174. https://doi.org/10.1016/j.atmosenv.2022.119174

Kusumawati, Y., Effendy, S., & Aldrian, E. (2008). Variasi Spasial dan Temporal Hujan Konvektif di Pulau Jawa Berdasarkan Citra Satelit. Agromet, 22(1). https://doi.org/10.29244/j.agromet.22.1.%25p

Marzuki, Hashiguchi, H., Yamamoto, M. K., Yamamoto, M., Mori, S., Yamanaka, M. D., Carbone, R. E., & Tuttle, J. D. (2013). Cloud episode propagation over the Indonesian Maritime Continent from 10years of infrared brightness temperature observations. Atmospheric Research, 120–121, 268–286. https://doi.org/10.1016/j.atmosres.2012.09.004

Nisa, A., Chel, M., Ooi, G., Juneng, L., Isra, M. A., Hernandi, R., & Tangang, F. (2022). Spatio-temporal analysis of aerosol optical depth using rotated empirical orthogonal function over the Maritime Continent from 2001 to 2020. Atmospheric Environment, 290, 119356. https://doi.org/10.1016/j.atmosenv.2022.119356

Nitta, T., & Sakine, S. (1994). Diurnal variation of convective activity over the tropical western pasific. Journal of the Meteorological Siciety of Japan, 72(5), 627–641. https://doi.org/10.2151/jmsj1965.72.5_627

Ogino, S. Y., Yamanaka, M. D., Mori, S., & Matsumoto, J. (2016). How Much is the Precipitation Amount over the Tropical Coastal Region ? Journal of Climate, 29(3), 1231–1236. https://doi.org/10.1175/JCLI-D-15-0484.1

Oulkar, S., Siingh, D., Saha, U., & Kamra, A. K. (2019). Distribution of lightning in relation to topography and vegetation cover over the dry and moist regions in the Himalayas. Journal of Earth System Science, 128(7). https://doi.org/10.1007/s12040-019-1203-9

Qian, J.-H., Robertson, A. W., & Moron, V. (2010). Interactions among ENSO, the Monsoon, and Diurnal Cycle in Rainfall Variability over Java, Indonesia. Journal of the Atmospheric Sciences, 67(11), 3509–3524. https://doi.org/10.1175/2010JAS3348.1

Ramadhan, R., Marzuki, M., Yusnaini, H., Ningsih, A. P., Hashiguchi, H., Shimomai, T., Vonnisa, M., Ulfah, S., Suryanto, W., & Sholihun, S. (2022). Ground Validation of GPM IMERG-F Precipitation Products with the Point Rain Gauge Records on the Extreme Rainfall Over a Mountainous Area of Sumatra Island. Jurnal Penelitian Pendidikan IPA, 8(1), 163–170. https://doi.org/10.29303/jppipa.v8i1.1155

Saidah, H., Hanifah, L., & Negara, I. D. G. J. (2023). Climate Change Impact on Drought Characteristics in North Lombok Regency. Jurnal Penelitian Pendidikan IPA, 9(5), 2332–2340. https://doi.org/10.29303/jppipa.v9i5.2380

Satyawardhana, H., & Yulihastin, E. (2016). Interaksi El Nino, Monsun, dan Topografi Lokal Terhadap Anomali Hujan di Pulau Jawa. Pusat Sains Dan Teknologi Atmosfer, 60–74. Retrieved from https://www.researchgate.net/publication/309242925_Interaksi_El_Nino_Monsun_dan_Topografi_Lokal_Terhadap_Anomali_Hujan_di_Pulau_Jawa

Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics from Air Pollution to Climate Change (3rd ed.). John Wiley & Sons, Inc.

Shi, Z., Wang, H., Tan, Y., Li, L., & Li, C. (2020). Influence of aerosols on lightning activities in central eastern parts of China. Atmospheric Science Letters, 21(2), 1–10. https://doi.org/10.1002/asl.957

Siingh, D., Kumar, P. R., Kulkarni, M. N., Singh, R. P., & Singh, A. K. (2013). Lightning, convective rain and solar activity - Over the South/Southeast Asia. Atmospheric Research, 120–121, 99–111. https://doi.org/10.1016/j.atmosres.2012.07.026

Thornton, J. A., Virts, K. S., Holzworth, R. H., & Mitchell, T. P. (2017). Lightning enhancement over major oceanic shipping lanes. Geophysical Research Letters, 44(17), 9102–9111. https://doi.org/10.1002/2017GL074982

Tippett, M. K., Allen, J. T., Gensini, V. A., & Brooks, H. E. (2015). Climate and Hazardous Convective Weather. Current Climate Change Reports, 1(2), 60–73. https://doi.org/10.1007/s40641-015-0006-6

Uman, M. A. (2011). Lightning. Dover Publication, Inc.

Wallace, J. M., & Hobbs, P. V. (2014). Atmosheric science: an introductory survey. In University of Washington (2nd ed.).

Wang, H., Tan, Y., Shi, Z., Yang, N., & Zheng, T. (2023). Diurnal differences in the effect of aerosols on cloud-to-ground lightning in the Sichuan Basin. Atmospheric Chemistry and Physics, 23(4), 2843–2857. https://doi.org/10.5194/acp-23-2843-2023

Yadava, P. K., Soni, M., Verma, S., Kumar, H., Sharma, A., & Payra, S. (2020). The major lightning regions and associated casualties over India. Natural Hazards, 101(1), 217–229. https://doi.org/10.1007/s11069-020-03870-8

Yair, Y. (2018). Lightning hazards to human societies in a changing climate. Environmental Research Letters, 13(12). https://doi.org/10.1088/1748-9326/aaea86

Zhao, P., Li, Z., Xiao, H., Wu, F., Zheng, Y., Cribb, M. C., Jin, X., & Zhou, Y. (2020). Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China. Atmospheric Chemistry and Physics, 20(21), 13379–13397. https://doi.org/10.5194/acp-20-13379-2020

Zhao, P., Zhang, Y., Liu, C., Zhang, P., Xiao, H., & Zhou, Y. (2022). Potential Relationship Between Aerosols and Positive Cloud-to-Ground Lightning During the Warm Season in Sichuan, Southwest China. Frontiers in Environmental Science, 10, 1–11. https://doi.org/10.3389/fenvs.2022.945100

Zheng, D., Zhang, Y., Meng, Q., Chen, L., & Dan, J. (2016). Climatological comparison of small- and large-current cloud-to-ground lightning flashes over Southern China. Journal of Climate, 29(8), 2831–2848. https://doi.org/10.1175/JCLI-D-15-0386.1

Author Biographies

Ahmad Rizqy Shubri, Universitas Andalas

Author Origin : Indonesia

Mutya Vonnisa, Universitas Andalas

Author Origin : Indonesia

Marzuki Marzuki, Universitas Andalas

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Rizqy Shubri, A., Vonnisa, M., & Marzuki, M. (2023). Seasonal and Diurnal Variation of Lightning Over Java Region and Its Relationship with Aerosol . Jurnal Penelitian Pendidikan IPA, 9(11), 9516–9523. https://doi.org/10.29303/jppipa.v9i11.4784