Vol. 11 No. 4 (2025): April
Open Access
Peer Reviewed

Simulation of The Conductivity Hydraulic Effect on Seawater Intrusion

Authors

Ferdy , Tirza Wungkana , Dolfie Paulus Pandara , Maria D. Bobanto , Hanny F. Sangian , Adey Tanauma , Seni H. Tongkukut , Hesky S. Kolibu

DOI:

10.29303/jppipa.v11i4.5437

Published:

2025-04-25

Downloads

Abstract

This research has been conducted with the aim of simulating the process of seawater intrusion using SEAWAT software and assessing the factors causing seawater intrusion. In this simulation, variations in hydraulic conductivity and aquifer material types are explored to understand their impact on the distribution of water levels. The simulation results are presented in the form of simulated concentration plots used to visualize concentration distribution with color gradients reflecting changes in concentration values. Additionally, the direction of groundwater flow is represented by arrows, aiding in understanding the movement patterns of dissolved substances within the aquifer. Simulated head plots are created using colors and contour lines. The resulting simulated head plots depict changes in color and contour lines that represent variations in water levels throughout the aquifer. Color gradients from yellow to purple indicate a decrease in water levels, while contour lines indicate the direction of groundwater flow. Furthermore, changes in the shape of contour lines from straight to curved depict changes in the topography or hydrogeological characteristics within the aquifer. The simulations are carried out by considering changes in hydraulic conductivity and aquifer material characteristics. In the context of this research, hydraulic conductivity is considered a key factor influencing the movement of dissolved substances within the aquifer, and through this analysis, it is found that hydraulic conductivity significantly affects water level distribution and groundwater flow patterns.

 

Keywords:

Henry problem Hydraulic conductivity Seawater intrusion

References

Abd-Elaty, I., Abd-Elhamid, H. F., & Qahman, K. (2020). Coastal Aquifer Protection from Saltwater Intrusion Using Abstraction of Brackish Water and Recharge of Treated Wastewater: Case Study of the Gaza Aquifer. Journal of Hydrologic Engineering, 25(7), 05020012. https://doi.org/10.1061/(asce)he.1943-5584.0001927

Abd-Elaty, I., Elhamid, H. F. A., & Javadi, A. (2016). Numerical Analysis of the Effects of Changing Hydraulic Parameters on Saltwater Intrusion in Coastal Aquifers. Engineering Computations (Swansea, Wales), 33(8), 2546–2564. https://doi.org/10.1108/EC-11-2015-0342

Ajami, H. (2021). Geohydrology: Groundwater. In Encyclopedia of Geology (2nd ed.). Elsevier Inc. https://doi.org/10.1016/b978-0-12-409548-9.12388-7

Ardaneswari, T. A., Yulianto, T., & Putranto, T. T. (2016). Analisis Intrusi Air Laut Meggunakan Data Resistivitas dan Geokimia Airtanah di Dataran Aluvial Kota Semarang. Youngster Physics Journal, 5(4), 335-350. Retrieved from https://ejournal3.undip.ac.id/index.php/bfd/article/view/14116

Bakker, M., Schaars, F., Hughes, J. (2013). Documentation of the Seawater Intrusion (SWI2) Package for MODFLOW. https://doi.org/10.3133/tm6A46

Benz, S. A., Bayer, P., & Blum, P. (2017). Global Patterns of Shallow Groundwater Temperatures. Environmental Research Letters, 12(3). https://doi.org/10.1088/1748-9326/aa5fb0

Bordbar, M., Neshat, A., Javadi, S., Pradhan, B., & Aghamohammadi, H. (2020). Meta-Heuristic Algorithms in Optimizing GALDIT Framework: A Comparative Study for Coastal Aquifer Vulnerability Assessment. Journal of Hydrology, 585(March),124768. https://doi.org/10.1016/j.jhydrol.2020.124768

Cahyadi, T. A., Notosiswoyo, S., Iskandar, I., Widodo, L. E., & Suyono, S. (2014). Distribusi Konduktivitas Hidraulik dari Hasil Uji Akuifer-Constant Head Permeabilitas pada Batuan Sedimen Secara Heterogen. Conference: Temu Profesi Tahunan (TPT) XXIII PERHAPI 2014, 352-360. Makasar, Indonesia. http://dx.doi.org/10.17605/OSF.IO/AF8SN

Cantelon, J. A., Guimond, J. A., Robinson, C. E., Michael, H. A., & Kurylyk, B. L. (2022). Vertical Saltwater Intrusion in Coastal Aquifers Driven by Episodic Flooding: A Review. Water Resources Research, 58(11), e2022WR032614. https://doi.org/10.1029/2022wr032614

Damayanti, C. (2020). Penerapan Metode Global untuk Identifikasi Daerah Intrusi Air Laut. Seminar Nasional Riset Teknologi Terapan, 1(1). Retrieved from https://jurnal.untidar.ac.id/index.php/senaster/article/view/2547

Darsono, D., & Darmanto, D. (2019). Identifikasi Keberadaan Lapisan Akuifer Tertekan (Confined Aquifer) Berdasarkan Data Geolistrik (Studi Kasus: Desa Sambirejo Kecamatan Plupuh Kabupaten Sragen). Indonesian Journal of Applied Physics, 9(01), 46. https://doi.org/10.13057/ijap.v9i01.30122

Diersch, H. J. G., & Kolditz, O. (2002). Variable-Density Flow and Transport in Porous Media: Approaches and Challenges. Advances in Water Resources, 25(8-12), 899-944. https://doi.org/10.1016/S0309-1708(02)00063-5

Fahs, M., Koohbor, B., Belfort, B., Ataie-Ashtiani, B., Simmons, C. T., Younes, A., & Ackerer, P. (2018). A Generalized Semi-Analytical Solution for the Dispersive Henry Problem: Effect of Stratification and Anisotropy on Seawater Intrusion. Water (Switzerland), 10(2), 1–24. https://doi.org/10.3390/w10020230

Guo, W., & Langevin, C. D. (2002). User’s Guide to SEAWAT: A Computer Program for Simulation of Three Dimensional Variable-Density Ground-Water Flow. U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A7, 77 p.

Harding, R. (1991). The Saline Groundwater of the Sow Valley, and of the Upper Trent Valley near Weston (MSc Thesis). University of Birmingham, Birmingham.

Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey Modular Ground-Water Model: the Ground-Water Flow Process. U.S. Geological Survey.

Henry, H. R. (1964). Effects of Dispersion on Salt Encroachment in Coastal Aquifers. Sea Water in Coastal Aquifers, U.S. Geol. Surv. Supply Pap., 1613-C, C71-C84.

Hughes, J. D., & Sanford, W. E. (2004). SUTRA-MS A Version of SUTRA Modified to Simulate Heat and Multiple-Solute Transport. Water-Resources Open-File Report 2004-1207. Retrieved from https://pubs.usgs.gov/of/2004/1207/

Hunt, A. G., Skinner, T. E., Ewing, R. P., & Ghanbarian-Alavijeh, B. (2011). Dispersion of Solutes in Porous Media. European Physical Journal B, 80(4), 411–432. https://doi.org/10.1140/epjb/e2011-10805-y

Kalangi, P. N., Mandagi, A., Masengi, K. W., Luasunaung, A., Pangalila, F. P., & Iwata, M. (2013). Sebaran Suhu dan Salinitas di Teluk Manado. Jurnal Perikanan dan Kelautan Tropis, 9(2), 70–75. https://doi.org/10.35800/jpkt.9.2.2013.4179

Lee, H. (2018). SEAWAT with Flopy - Density-driven flow simulation. Retrieved from https://github.com/modflowpy/pymake

Lu, C., Chen, Y, Zhang, C., & Luo, J. (2013). Zona Pencampuran Air Tawar-Air Laut yang Stabil di Akuifer Pesisir Bertingkat. J Hydrol, 505, 24–34. http://dx.doi.org/10.1016/j. jhydrol.2013.09.017

Manginsela, F. B., Rondo, M., Rondonuwu, A. B., Kambey, A. D., & Lumuindong, F. (2016). Ekologi Perairan Teluk Manado. Penerbit FPIK Unsrat.

Mei, T., Zendrato, K., & Har, R. (2021). Analisis Perhitungan Debit Air Tanah pada Sistem Penyaliran Tambang Terbuka di Pit X PT. Bukit Asam Tbk., Kabupaten Muara Enim, Provinsi Sumatera Selatan. Jurnal Bina Tambang, 6(5).

Ouhamdouch, S., Bahir, M., & Ouazar, D. (2021). Seawater Intrusion into Coastal Aquifers from Semi-Arid Environments, Case of the Alluvial Aquifer of Essaouira basin (Morocco). Carbonates and Evaporites, 36(1), 1–12. https://doi.org/10.1007/s13146-020-00663-9

Panguriseng, D. (2018). Pengelolaan Air Tanah. Yogyakarta: Pena Indis.

Posundu, R. S. A., Kepel, R. C., Mandagi, S. V., Kalalo, F. P., Paruntu, C. P., Mingkit, W. M., & Boneka, F. B. (2019). Study on Public Facilities Zone Development Strategy asTourism Support in Manado Bay. Jurnal Ilmiah Platax, 7(1), 294-308. https://doi.org/10.35800/jip.7.1.2019.23404

Pu, L., Xin, P., Nguyen, T. T. M., Yu, X., Li, L., & Barry, D. A. (2020). Thermal Effects on Flow and Salinity Distributions in Coastal Confined Aquifers. Water Resources Research, 56(10), 1–17. https://doi.org/10.1029/2020WR027582

Sarmauli, O., Setyawan, A., & JS, D. (2016). Identifikasi Potensi Akuifer Berdasarkan Metode Geolistrik Tahanan Jenis pada Daerah Krisis Air Bersih di Kota Semarang. Youngster Physics Journal, 5(4), 327-334. Retrieved from https://ejournal3.undip.ac.id/index.php/bfd/article/view/14102

Shevah, Y. (2014). Adaptation to Water Scarcity and Regional Cooperation in the Middle East. In Comprehensive Water Quality and Purification (Pp. 40-70). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-382182-9.00004-9

Simpson, M. J., & Clement, T. B. (2004). Improving the Worthiness of the Henry Problem as a Benchmark for Density-Dependent Groundwater Flow Models. Water Resources Research, 40(1), W01504. http://dx.doi.org/10.1029/2003WR002199

Suhana, M. P. (2018). Karakteristik Sebaran Menegak dan Melintang Suhu dan Salinitas. Coastal and Marine Resources Research Center, Raja Ali Haji Maritime University Tanjungpinang-Indonesia.

Syaifullah, M. D. (2015). Suhu Permukaan Laut Perairan Indonesia dan Hubungannya dengan Pemanasan Global. Jurnal Segara, 11(2), 37–47. http://dx.doi.org/10.15578/segara.v11i2.7356

Tamborski, J., Brown, C., Bokuniewicz, H., Cochran, J. K., & Rasbury, E. T. (2020). Investigating Boron Isotopes for Identifying Nitrogen Sources Supplied by Submarine Groundwater Discharge to Coastal Waters. Frontiers in Environmental Science, 8(3), 1–15. https://doi.org/10.3389/fenvs.2020.00126

Thorne, D. T., Jr., Langevin, C. D., & Sukop, M. C. (2006). Addition of Simultaneous Heat and Solute Transport and Variable Fluid Viscosity to SEAWAT. Computer and Geosciences, 32(10), 1758-1768. http://dx.doi.org/10.1016/j.cageo.2006.04.005

Wals, J., & Westra, J. (2015). Cases in Bioplanet Earth Overexploitation of Coastal Aquifers. https://doi.org/10.13140/RG.2.1.2677.5523

Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C. T., & Barry, D. A. (2012). Sea Water Intrusion Processes, Investigation and Management: Recent Advances and Future Challenges. Advances in Water Resources, 51, 3-26. http://dx.doi.org/10.1016/j.advwatres.2012.03.004

Werner, A. D., & Simmons, C. T. (2009). Impact of Sea‐Level Rise on Sea Water Intrusion in Coastal Aquifers. Groundwater, 47(2), 197–204. https://doi.org/10.1111/j.1745-6584.2008.00535.x

Zhang, H., Xu, W. L., & Hiscock, K. M. (2013). Application of MT3dms and Geographic Information System to Evaluation of Groundwater Contamination in the Sherwood Sandstone Aquifer, UK. Water, air, & Soil Pollution, 224(2), 1438. http://dx.doi.org/10.1007/s11270-013-1438-z

Author Biographies

Ferdy, Universitas Sam Ratulangi

Author Origin : Indonesia

Tirza Wungkana, Universitas Sam Ratulangi

Author Origin : Indonesia

Dolfie Paulus Pandara, Universitas Sam Ratulangi

Author Origin : Indonesia

Maria D. Bobanto, Universitas Sam Ratulangi

Author Origin : Indonesia

Hanny F. Sangian, Universitas Sam Ratulangi

Author Origin : Indonesia

Adey Tanauma, Universitas Sam Ratulangi

Author Origin : Indonesia

Seni H. Tongkukut, Universitas Sam Ratulangi

Author Origin : Indonesia

Hesky S. Kolibu, Universitas Sam Ratulangi

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Ferdy, Wungkana, T., Pandara, D. P., Bobanto, M. D., Sangian, H. F., Tanauma, A., … Kolibu, H. S. (2025). Simulation of The Conductivity Hydraulic Effect on Seawater Intrusion. Jurnal Penelitian Pendidikan IPA, 11(4), 795–810. https://doi.org/10.29303/jppipa.v11i4.5437