Exploring the Complex Dynamics of Tropical Cyclone Activity in the Southern Indian Ocean: A Multidecade Analysis
DOI:
10.29303/jppipa.v9i11.5601Published:
2023-11-25Downloads
Abstract
This study analyzes tropical cyclones (TCs) in the Southern Indian Ocean from 1970 to 2022, utilizing data from the International Best Track Archive for Climate Stewardship (IBTrACS) and Sea Surface Temperature (SST) data from ERA-5. Trends are assessed with Sen's slope method. Significant TC shifts are evident. Categories 1-2 TCs have substantially reduced in number, duration, and speed, indicating an overall decline in activity. Conversely, more powerful TCs (categories 3-5) have intensified, driven by rising SST. This intensification is associated with alarming increases in the Power Dissipation Index (PDI) and Accumulated Cyclone Energy (ACE), reflecting heightened destructive potential. TCs predominantly occur during DJFM, influenced by elevated SST compared to MJJASO. Climate drivers, including El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Madden-Julian Oscillation (MJO), significantly affect TC characteristics. Elevated TC activity coincides with La Niña, neutral ENSO phases, and positive IOD events. At the same time, MJO influences are nuanced, leading to a slight TC activity decline, potentially due to data limitations in specific MJO phases. This study offers vital climatological insights into evolving TC risks in the Southern Indian Ocean, aiding agencies and decision-makers in understanding TC-related risks in the region.
Keywords:
El nino southern oscillation Indian ocean dipole Madden jullian oscillation Southern indian ocean Tropical cycloneReferences
Ali, M. M., Tanusha, U. N., Chand, C. P., Himasri, B., Bourassa, M. A., & Zheng, Y. (2021). Impact of the Madden–Julian Oscillation on North Indian Ocean Cyclone Intensity. Atmosphere, 12(12), 1554. https://doi.org/10.3390/atmos12121554
Asrianti, P., Bey, A., & Ilhamsyah, Y. (2013). Kajian beberapa karakteristik siklon tropis (kasus topan Choi-wan dan Nida di lautan Pasifik Utara bagian barat). Depik, 2(3). https://doi.org/10.13170/depik.2.3.974
Astier, N., Plu, M., & Claud, C. (2015). Associations between tropical cyclone activity in the Southwest Indian Ocean and El Niño Southern Oscillation. Atmospheric Science Letters, 16(4), 506–511. https://doi.org/10.1002/asl.589
Bjerknes, J. (1969). Atmospheric Teleconnections From the Equatorial Pacific 1. Monthly Weather Review, 97(3), 163–172. https://doi.org/10.1175/1520-0493(1969)097<0163:atftep>2.3.co;2
Blake, E. S., Landsea, C., & Gibney, E. J. (2011). The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts. National Weather Service.
Buckley, B. W., & Leslie, L. M. (2004). Preliminary climatology and improved modelling of south Indian Ocean and Southern Ocean midâ€latitude cyclones. International Journal of Climatology, 24(10), 1211–1230. https://doi.org/10.1002/joc.1050
Camargo, S. J., Emanuel, K. A., & Sobel, A. H. (2007). Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 20(19), 4819–4834. https://doi.org/10.1175/JCLI4282.1
Chand, S. S., Walsh, K. J. E., Camargo, S. J., Kossin, J. P., Tory, K. J., Wehner, M. F., Chan, J. C. L., Klotzbach, P. J., Dowdy, A. J., Bell, S. S., Ramsay, H. A., & Murakami, H. (2022). Declining tropical cyclone frequency under global warming. Nature Climate Change, 12(7), 655–661. https://doi.org/10.1038/s41558-022-01388-4
Chen, G., & Tam, C. (2010). Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophysical Research Letters, 37(1). https://doi.org/10.1029/2009GL041708
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., & Zhu, J. (2017). Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3(3). https://doi.org/10.1126/sciadv.1601545
Dowdy, A., & Kuleshov, Y. (2012). An analysis of tropical cyclone occurrence in the Southern Hemisphere derived from a new satellite-era data set. International Journal of Remote Sensing, 33(23), 7382–7397. https://doi.org/10.1080/01431161.2012.685986
Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436(7051), 686–688. https://doi.org/10.1038/nature03906
Fitchett, J. M. (2018). Recent emergence of CAT5 tropical cyclones in the South Indian Ocean. South African Journal of Science, 114(11/12), 1–6. https://doi.org/10.17159/sajs.2018/4426
Girishkumar, M. S., & Ravichandran, M. (2012). The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October–December. Journal of Geophysical Research: Oceans, 117(C2). https://doi.org/10.1029/2011JC007417
Ho, C., Kim, J., Jeong, J., Kim, H., & Chen, D. (2006). Variation of tropical cyclone activity in the South Indian Ocean: El Niño–Southern Oscillation and Maddenâ€Julian Oscillation effects. Journal of Geophysical Research: Atmospheres, 111(D22). https://doi.org/10.1029/2006JD007289
Jury, M. R., Pathack, B., Wang, B., Powell, M., & Raholijao, N. (1993). A Destructive Tropical Cyclone Season in the Sw Indian Ocean: January-February 1984. South African Geographical Journal, 75(2), 53–59. https://doi.org/10.1080/03736245.1993.10586405
Kim, H.-M., Webster, P. J., & Curry, J. A. (2011). Modulation of North Pacific Tropical Cyclone Activity by Three Phases of ENSO. Journal of Climate, 24(6), 1839–1849. https://doi.org/10.1175/2010JCLI3939.1
Klotzbach, P. J., Schreck, C. J., Compo, G. P., Wood, K. M., Oliver, E. C. J., Bowen, S. G., & Bell, M. M. (2023). Influence of the Maddenâ€Julian Oscillation on Continental United States Hurricane Landfalls. Geophysical Research Letters, 50(7), 2023 102762. https://doi.org/10.1029/2023GL102762
Klotzbach, P. J., Wood, K. M., Schreck, C. J., Bowen, S. G., Patricola, C. M., & Bell, M. M. (2022). Trends in Global Tropical Cyclone Activity: 1990–2021. Geophysical Research Letters, 49(6), 2021 095774. https://doi.org/10.1029/2021GL095774
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K., & Sugi, M. (2010). Tropical cyclones and climate change. Nature Geoscience, 3(3), 157–163. https://doi.org/10.1038/ngeo779
Kuleshov, Y., Fawcett, R., Qi, L., Trewin, B., Jones, D., McBride, J., & Ramsay, H. (2010). Trends in tropical cyclones in the South Indian Ocean and the South Pacific Ocean. Journal of Geophysical Research: Atmospheres, 115(D1). https://doi.org/10.1029/2009JD012372
Lau, N. C., Leetmaa, A., & Nath, M. J. (2006). Attribution of atmospheric variations in the 1997-2003 period to SST anomalies in the pacific and Indian ocean basins. Journal of Climate, 19(15), 3607–3628. https://doi.org/10.1175/JCLI3813.1
Li, T., Kwon, M., Zhao, M., Kug, J., Luo, J., & Yu, W. (2010). Global warming shifts Pacific tropical cyclone location. Geophysical Research Letters, 37(21). https://doi.org/10.1029/2010GL045124
Liu, K. S., & Chan, J. C. L. (2012). Interannual variation of Southern Hemisphere tropical cyclone activity and seasonal forecast of tropical cyclone number in the Australian region. International Journal of Climatology, 32(2), 190–202. https://doi.org/10.1002/joc.2259
Melcher, M. (2022). Tropical Cyclone Translation Speeds in the Northern Atlantic Ocean. Honors Theses. Retrieved from https://scholarworks.wmich.edu/honors_theses/3560.
Ninggar, R. D., & Siregar, D. C. (2020). Analisis Siklon Tropis Mangga dan Dampaknya terhadap Kondisi Cuaca di Indonesia. Jurnal Widya Climago, 2(2), 69–76. Retrieved from https://e-journal.pusdiklat.bmkg.go.id/index.php/climago/article/view/26
Saha, K. K., & Wasimi, S. A. (2015). Statistical modelling of tropical cyclones’ longevity after landfall in Australia. Australian Meteorological and Oceanographic Journal, 65(3–4), 376–386. https://doi.org/10.22499/2.6503.006
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360–363. https://doi.org/10.1038/43854
Suhardi, B., Adiputra, A., & Reeva Avrian. (2020). Kajian Dampak Cuaca Ekstrem Saat Siklon Tropis Cempaka dan Dahlia di Wilayah Jawa Barat. Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 4(2), 61–67. https://doi.org/10.29405/jgel.v4i2.4354
Sumathipala, W. (2014). El Nino - A short term signal of a long term and a large scale climate variation. Journal of the National Science Foundation of Sri Lanka, 42(3), 199. https://doi.org/10.4038/jnsfsr.v42i3.7405
Thompson, C., Barthe, C., Bielli, S., Tulet, P., & Pianezze, J. (2021). Projected Characteristic Changes of a Typical Tropical Cyclone under Climate Change in the South West Indian Ocean. Atmosphere, 12(2), 232. https://doi.org/10.3390/atmos12020232
Trenberth, K. E. (1997). The definition of el nino. Bulletin of the American Meteorological Society, 78(12), 2771–2778. https://doi.org/10.1175/1520-0477(1997)078
Ulhaq, N. D., & Haryanto, Y. D. (2022). Analisis kondisi cuaca saat terjadi Siklon Tropis Paddy di wilayah Pulau Jawa (studi kasus: 22-24 November 2021). Jurnal Penelitian Sains, 24(1), 7. https://doi.org/10.56064/jps.v24i1.676
Vidya, P. J., Ravichandran, M., Murtugudde, R., Subeesh, M. P., Chatterjee, S., Neetu, S., & Nuncio, M. (2020). Increased cyclone destruction potential in the Southern Indian Ocean. Environmental Research Letters, 16(1), 014027. https://doi.org/10.1088/1748-9326/abceed
Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H.-R. (2005). Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment. Science, 309(5742), 1844–1846. https://doi.org/10.1126/science.1116448
Wheeler, M. C., & Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132(8), 1917–1932. https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
Xie, S.-P., Annamalai, H., Schott, F. A., & McCreary, J. P. (2002). Structure and Mechanisms of South Indian Ocean Climate Variability. Journal of Climate, 15(8), 864–878. https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2
Yamaguchi, M., Chan, J. C. L., Moon, I.-J., Yoshida, K., & Mizuta, R. (2020). Global warming changes tropical cyclone translation speed. Nature Communications, 11(1), 47. https://doi.org/10.1038/s41467-019-13902-y
Yuan, J., & Cao, J. (2013). North Indian Ocean tropical cyclone activities influenced by the Indian Ocean Dipole mode. Science China Earth Sciences, 56(5), 855–865. https://doi.org/10.1007/s11430-012-4559-0
License
Copyright (c) 2023 Selly Tridaiana, Marzuki Marzuki

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






