Antibacterial Activity of Pseudomonas Aeruginosa ISP1RL3 Against Multidrug Resistance Bacteria

Authors

Anak Agung Gede Indraningrat , Pande Putu Christine Putri Purnami , Anak Agung Sri Agung Aryastuti , Made Dharmesti Wijaya

DOI:

10.29303/jppipa.v9i12.5643

Published:

2023-12-20

Issue:

Vol. 9 No. 12 (2023): December

Keywords:

Antibacterial Activity, ISP1RL3, Pseudomonas Aeruginosa, Resistance Bacteria

Research Articles

Downloads

How to Cite

Indraningrat, A. A. G. ., Purnami, P. P. C. P. ., Aryastuti, A. A. S. A. ., & Wijaya, M. D. . (2023). Antibacterial Activity of Pseudomonas Aeruginosa ISP1RL3 Against Multidrug Resistance Bacteria . Jurnal Penelitian Pendidikan IPA, 9(12), 11126–11136. https://doi.org/10.29303/jppipa.v9i12.5643

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Seaweed-associated bacteria have a pivotal role to synthesize arrays of secondary metabolites. This study described a bacterial isolate encoded as ISP1RL3 that was isolated from seaweed Eucheuma cottonii. Ethyl acetate extracts of ISP1RL3 was screened against non-multidrug bacteria (Staphylococcus aureus ATCC 25923, Streptococcus mutans FNCC 0405, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603) and multi-drug resistance bacteria (Methicilin-resistance S. aureus (MRSA), E. coli ESBL, K. pneumoniae ESBL, dan A.baumanii ESBL). Our result showed that ISP1RL3 displayed rod structure, Gram negative and identified as Pseudomonas aeruginosa. The crude extract displayed strong antibacterial activity against all bacterial test with the range zone of inhibition of 10 mm – 18 mm. The GC-MS analysis detected the presence of 13 antibacterial compounds with four dominant moleculer were o-Xylene, Ethylbenzene, p-Xylene and Benzene, 1,3-dimethyl. Overall, this finding highlights the potency of seaweed-associated bacteria to synthesize active compounds against multidrug resistance bacteria.

References

Alam, K., Islam, M. M., Li, C., Sultana, S., Zhong, L., Shen, Q., Yu, G., Hao, J., Zhang, Y., Li, R., & Li, A. (2021). Genome mining of pseudomonas species: Diversity and evolution of metabolic and biosynthetic potential. Molecules, 26(24). https://doi.org/10.3390/molecules26247524

AlBalawi, A. N., Elmetwalli, A., Baraka, D. M., Alnagar, H. A., Alamri, E. S., & Hassan, M. G. (2023). Chemical Constituents, Antioxidant Potential, and Antimicrobial Efficacy of Pimpinella anisum Extracts against Multidrug-Resistant Bacteria. Microorganisms, 11(4). https://doi.org/10.3390/microorganisms11041024

Amankwah, F. K. D., Gbedema, S. Y., Boakye, Y. D., Bayor, M. T., & Boamah, V. E. (2022). Antimicrobial Potential of Extract from a Pseudomonas aeruginosa Isolate. Scientifica, 2022. https://doi.org/10.1155/2022/4230397

Andriani, Z., Fasya, A. G., & Hanapi, A. (2016). Antibacterial Activity of the Red Algae Eucheuma cottonii Extract from Tanjung Coast, Sumenep Madura. Alchemy, 4(2), 93. https://doi.org/10.18860/al.v4i2.3197

Bellahcen, T. O., Cherki, M., Sánchez, J. A. C., Cherif, A., & EL Amrani, A. (2019). Chemical Composition and Antibacterial Activity of the Essential Oil of Spirulina platensis from Morocco. Journal of Essential Oil-Bearing Plants, 22(5), 1265–1276. https://doi.org/10.1080/0972060X.2019.1669492

Bengtsson-Palme, J. (2020). Microbial model communities: To understand complexity, harness the power of simplicity. Computational and Structural Biotechnology Journal, 18, 3987–4001. https://doi.org/10.1016/j.csbj.2020.11.043

Bharadwaj, A., Rastogi, A., Pandey, S., Gupta, S., & Sohal, J. S. (2022). Multidrug-Resistant Bacteria: Their Mechanism of Action and Prophylaxis. BioMed Research International, 2022. https://doi.org/10.1155/2022/5419874

Bollinger, A., Thies, S., Katzke, N., & Jaeger, K. E. (2020). The biotechnological potential of marine bacteria in the novel lineage of Pseudomonas pertucinogena. Microbial Biotechnology, 13(1), 19–31. https://doi.org/10.1111/1751-7915.13288

De La Hoz-Romo, M. C., Díaz, L., & Villamil, L. (2022). Marine Actinobacteria a New Source of Antibacterial Metabolites to Treat Acne Vulgaris Disease—A Systematic Literature Review. Antibiotics, 11(7). https://doi.org/10.3390/antibiotics11070965

Dharmawan, I. W. E. K. A., Kawuri, R., & Parwanayoni, M. S. (2009). Isolasi Streptomyces Spp. Pada Kawasan Hutan Provinsi Bali Serta Uji Daya Hambatnya Terhadap Lima Strain Diarrheagenic Escherichia Coli. Jurnal Biologi, 13(1), 1–6. Retrieved from https://ojs.unud.ac.id/index.php/BIO/article/download/579/376

Elabed, H., González-Tortuero, E., Ibacache-Quiroga, C., Bakhrouf, A., Johnston, P., Gaddour, K., Blázquez, J., & Rodríguez-Rojas, A. (2019). Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiology, 19(1), 1–13. https://doi.org/10.1186/s12866-019-1499-2

Epand, R. M., Walker, C., Epand, R. F., & Magarvey, N. A. (2016). Molecular mechanisms of membrane targeting antibiotics. Biochimica et Biophysica Acta - Biomembranes, 1858(5), 980–987. https://doi.org/10.1016/j.bbamem.2015.10.018

Garciglia-Mercado, C., Gaxiola-Robles, R., Ascencio, F., Grajales-Muñiz, C., Rodríguez, M. L. S., Silva-Sánchez, J., Estrada-García, M. T., & Gómez-Anduro, G. A. (2021). Antibacterial effect of acetic acid during an outbreak of carbapenem-resistant Acinetobacter baumannii in an ICU (II). Journal of Infection in Developing Countries, 15(8), 1167–1172. https://doi.org/10.3855/jidc.11693

Girão, M., Ribeiro, I., Ribeiro, T., Azevedo, I. C., Pereira, F., Urbatzka, R., Leão, P. N., & Carvalho, M. F. (2019). Actinobacteria isolated from laminaria ochroleuca: A source of new bioactive compounds. Frontiers in Microbiology, 10(APR), 1–13. https://doi.org/10.3389/fmicb.2019.00683

Hafsan, H., Aziz, I., Sukmawaty, E., S, S., Hasyimuddin, H., Zulkarnain, Z., & Hajrah, H. (2019). Antibiotic Activity of Endophytic Bacteria isolated from Euchema cottoni of North Galesong Sea, Takalar. ICOST 2019, 179-184. https://doi.org/10.4108/eai.2-5-2019.2284688

Hai, Y., Wei, M. Y., Wang, C. Y., Gu, Y. C., & Shao, C. L. (2021). The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987–2020). Marine Life Science and Technology, 3(4), 488–518. https://doi.org/10.1007/s42995-021-00101-2

Han, Y., Sun, Z., & Chen, W. (2020). Antimicrobial susceptibility and antibacterial mechanism of limonene against listeria monocytogenes. Molecules, 25(1), 1–15. https://doi.org/10.3390/molecules25010033

Haque, M., Chowdhury, R., Islam, K., & Akbar, M. (2009). Propionic Acid Is An Alternative To Antibiotics In Poultry Diet. Bangladesh Journal of Animal Science, 38(1–2), 115–122. https://doi.org/10.3329/bjas.v38i1-2.9920

Isnansetyo, A., & Kamei, Y. (2009). Bioactive substances produced by marine isolates of Pseudomonas. Journal of Industrial Microbiology and Biotechnology, 36(10), 1239–1248. https://doi.org/10.1007/s10295-009-0611-2

Jubeh, B., Breijyeh, Z., & Karaman, R. (2020). Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules, 25(12), 1–22. https://doi.org/10.3390/molecules25122888

Kachur, K., & Suntres, Z. (2020). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition, 60(18), 3042–3053. https://doi.org/10.1080/10408398.2019.1675585

Kung, V. L., Ozer, E. A., & Hauser, A. R. (2010). The Accessory Genome of Pseudomonas aeruginosa . Microbiology and Molecular Biology Reviews, 74(4), 621–641. https://doi.org/10.1128/mmbr.00027-10

Lee, D. S., Eom, S. H., Jeong, S. Y., Shin, H. J., Je, J. Y., Lee, E. W., Chung, Y. H., Kim, Y. M., Kang, C. K., & Lee, M. S. (2013). Anti-methicillin-resistant Staphylococcus aureus (MRSA) substance from the marine bacterium Pseudomonas sp. UJ-6. Environmental Toxicology and Pharmacology, 35(2), 171–177. https://doi.org/10.1016/j.etap.2012.11.011

Morah, F. N. I., & Odey, C. O. (2020). Chemical composition and antimicrobial activity of Eleusine indica leaf essential oil. International Journal of Chemical and Biochemical Sciences, 18, 129–133. Retrieved from https://www.iscientific.org/wp-content/uploads/2020/05/16-IJCBS-20-18-16.pdf

Negara, B. F. S. P., Riyanti, ., Marhaeni, B., & Kusuma, A. B. (2016). Antibacterial activity of Actinomycetes symbiont with seaweeds: a prosperous agent of animal antibacterial. Aceh Journal of Animal Science, 1(2), 45–49. https://doi.org/10.13170/ajas.1.2.4475

Ouchari, L., Boukeskasse, A., Bouizgarne, B., & Ouhdouch, Y. (2019). Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity. Biology Open, 8(2). https://doi.org/10.1242/bio.035410

Purnami, P. P. C. P., Indraningrat, A. A. G., & Darmayasa, I. B. G. (2022). Antibacterial Activity Screening Of Bacterial Isolates Associated With Seaweed Eucheuma cottonii From Coastal Area In Buleleng, Bali. Biotropika: Journal of Tropical Biology, 10(2), 132–140. https://doi.org/10.21776/ub.biotropika.2022.010.02.07

Putri, T., Arsianti, A., Subroto, P. A. M., & Lesmana, E. (2019). Phytochemical analysis and antioxidant activity of marine algae Eucheuma Sp. AIP Conference Proceedings, 2092(April). https://doi.org/10.1063/1.5096720

Qian, W., Liu, M., Fu, Y., Wang, T., Zhang, J., Yang, M., Sun, Z., Li, X., & Li, Y. (2020). Antimicrobial and Antibiofilm Activities of Citral against Carbapenem-Resistant Enterobacter cloacae. Foodborne Pathogens and Disease, 17(7), 459–465. https://doi.org/10.1089/fpd.2019.2751

Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7(1), 1–27. https://doi.org/10.1038/s41392-022-01056-1

Rokade, Y. B., & Sayyed, R. Z. (2011). ChemInform Abstract: Naphthalene Derivatives: A New Range of Antimicrobial Agents with High Therapeutic Value. ChemInform, 42(21), no-no. https://doi.org/10.1002/chin.201121224

Schneider, Y. K. (2021). Bacterial natural product drug discovery for new antibiotics: Strategies for tackling the problem of antibiotic resistance by efficient bioprospecting. Antibiotics, 10(7). https://doi.org/10.3390/antibiotics10070842

Singh, R. P., & Reddy, C. R. K. (2014). Seaweed-microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiology Ecology, 88(2), 213–230. https://doi.org/10.1111/1574-6941.12297

Srinivasan, R., Kannappan, A., Shi, C., & Lin, X. (2021). Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds. Marine Drugs, 19(10), 1–36. https://doi.org/10.3390/md19100530

Sulistyani, N., & Akbar, A. N. (2014). Aktivitas Isolat Actinomycetes dari Rumput Laut (Eucheuma cottonii) sebagai Penghasil Antibiotik terhadap Staphylococcus aureus dan Escherichia coli (Activity of Actinomycetes Isolate from Seeweed (Eucheuma cottonii ) as Antibiotic Producer against St. Jurnal Ilmu Kefarmasian Indonesia, 12(1), 1–9. Retrieved from http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/download/168/114

Tan, L. T. (2023). Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Marine Drugs, 21(3). https://doi.org/10.3390/md21030174

Thenmozhi, S., Moorthy, K., Sureshkumar, B. T., & Suresh, M. (2014). Antibiotic Resistance Mechanism of ESBL Producing Enterobacteriaceae in Clinical Field: A Review. International Journal of Pure & Applied Bioscience, 2(3), 207–226.

Tiwari, S., Mishra, S., Misra, D. R., & Upadhyay, R. (2016). Identification of new bioactive compounds from fruit of Abutilon indicum through GCMS analysis. Biological Forum - An International Journal, 8(1), 548–554.

Tuon, F. F., Dantas, L. R., Suss, P. H., & Tasca Ribeiro, V. S. (2022). Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens, 11(3). https://doi.org/10.3390/pathogens11030300

Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic Resistance in Bacteria—A Review. Antibiotics, 11(8), 1079. https://doi.org/10.3390/antibiotics11081079

Wei, Q., & Zhang, Y. H. (2023). Composition and Antioxidative and Antibacterial Activities of the Essential Oil from Farfugium japonicum. Molecules, 28(6), 2774. https://doi.org/10.3390/molecules28062774

Yoon, B. K., Jackman, J. A., Valle-González, E. R., & Cho, N. J. (2018). Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. In International Journal of Molecular Sciences, 19(4). https://doi.org/10.3390/ijms19041114

Zayed, M. Z., & Samling, B. (2016). Phytochemical constituents of the leaves of Leucaena leucocephala from Malaysia. International Journal of Pharmacy and Pharmaceutical Sciences, 8(12), 174–179. https://doi.org/10.22159/ijpps.2016v8i12.11582

Author Biographies

Anak Agung Gede Indraningrat, Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Jl Terompong no 24, Denpasar-Bali, 80235, Indonesia.

Pande Putu Christine Putri Purnami, Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Jl Terompong no 24, Denpasar-Bali, 80235, Indonesia.

Anak Agung Sri Agung Aryastuti, Department of Pharmacology, Faculty of Medicine and Health Sciences, Warmadewa University, Jl Terompong no 24, Denpasar-Bali, 80235, Indonesia.

Made Dharmesti Wijaya, Department of Pharmacology, Faculty of Medicine and Health Sciences, Warmadewa University, Jl Terompong no 24, Denpasar-Bali, 80235, Indonesia.

License

Copyright (c) 2023 Anak Agung Gede Indraningrat, Pande Putu Christine Putri Purnami, Anak Agung Sri Agung Aryastuti, Made Dharmesti Wijaya

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).