Mental Models in Chemistry Concept: A Systematic Review
DOI:
10.29303/jppipa.v10i11.6353Published:
2024-11-25Downloads
Abstract
Mental models in chemistry concepts are defined as student’s comprehension of three levels of chemical representations, including macroscopic, submicroscopic, and symbolic levels. This study aims to identify, review, and evaluate research concerning mental models in chemistry concepts through specific research questions. The research method used is a systematic literature review (SLR) by analyzing relevant articles from Google Scholar, Eric, Scopus, and Crosscref, focusing on publications from the the past decade (2013–2023). A total of 52 articles were obtained from the analysis based on the inclusion and exclusion criteria. The findings indicate that most studies aim to understand students' mental model profiles related to chemistry concepts. High school students are predominantly involved as research samples. The most used data collection tool is diagnostic tests. Mental models are primarily studied in physical chemistry, particularly in chemical equilibrium, adopting various theories, especially the Sendur, Toprak, and Pekmez (2010) model. Factors influencing the formation of students' mental models include internal factors such as prior knowledge, experiences, attitudes, and motivations, and external factors such as the environment, incomplete textbooks, and inappropriate teaching strategies.
Keywords:
Chemistry concepts Mental model Systematic literature reviewReferences
Adbo, K., & Taber, K. S. (2009). Learners’ Mental Models of the Particle Nature of Matter: A study of 16‐year‐old Swedish science students. International Journal of Science Education, 31(6), 757–786. https://doi.org/10.1080/09500690701799383
Akaygun, S. (2016). Is the oxygen atom static or dynamic? The effect of generating animations on students’ mental models of atomic structure. Chemistry Education Research and Practice, 17(4), 788–807. https://doi.org/10.1039/C6RP00067C
Albaiti, A., Jukwati, & Lepa, A. A. (2022). Solubility and solubility product phenomena: Papua senior high school students mental model. Journal of Turkish Science Education, 19(2), 481–495. https://doi.org/10.36681/tused.2022.132
Amalia, F. R., Ibnu, S., Widarti, H. R., & Wuni, H. (2018). Students’ mental models of acid and base concepts taught using the cognitive apprenticeship learning model. Jurnal Pendidikan IPA Indonesia, 7(2), 187–192. https://doi.org/10.15294/jpii.v7i2.14264
Andina, R. E., Ridwan, A., & Rahmawati, Y. (2017). Analisis Model Mental Siswa pada Materi Hidrolisis Garam di Klaten. JRPK: Jurnal Riset Pendidikan Kimia, 7(2), 144–152. https://doi.org/10.21009/JRPK.072.08
Annisa, D., Sutrisno, H., & Widjajanti, E. (2023). Academic resilience in chemistry during covid-19: A systematic review. Jurnal Penelitian Pendidikan IPA, 9(11), 1111–1119. https://doi.org/10.29303/jppipa.v9i11.4354
Ariani, T. (2020). Analysis of students’ critical thinking skills in physics problems. Kasuari: Physics Education Journal (KPEJ), 3(1), 1–17. https://doi.org/10.37891/kpej.v3i1.119
Atikah, A., Habiddin, H., Nazriati, N., Rahayu, S., & Dasna, I. W. (2023). A systematic literature review: Model mental pada konsep-konsep kimia. JIPK, 17(2), 107–115. https://doi.org/10.15294/jipk.v17i2.39070
Baloyi, W. H., & Jordan, P. (2016). Systematic review as a research method in post-graduate nursing education. Health SA Gesondheid, 21, 120–128. https://doi.org/10.1016/j.hsag.2015.08.002
Becker, N., Stanford, C., Towns, M., & Cole, R. (2015). Translating across macroscopic, submicroscopic, and symbolic levels: the role of instructor facilitation in an inquiry-oriented physical chemistry class. Chemistry Education Research and Practice, 16(4), 769–785. https://doi.org/10.1039/C5RP00064E
Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In Developing Models in Science Education (pp. 119–135). Springer Netherlands. https://doi.org/10.1007/978-94-010-0876-1_6
Cahya, A. P., Wiyarsi, A., & Prodjosantoso, A. K. (2019). Mental model of prospective chemistry teacher on equilibrium constant and degree of dissociation. Jurnal Kependidikan: Penelitian Inovasi Pembelajaran, 3(2), 249–262. https://doi.org/10.21831/jk.v3i2.26696
Chittleborough, G. D. (2004). Science and mathematics education centre the role of teaching models and chemical representations in developing students’ mental models of chemical phenomena (Thesis) [Curtin University of Technology]. Retrieved from http://hdl.handle.net/20.500.11937/763
Chittleborough, G., & Treagust, D. F. (2007). The modelling ability of non-major chemistry students and their understanding of the sub-microscopic level. Chem. Educ. Res. Pract., 8(3), 274–292. https://doi.org/10.1039/B6RP90035F
Coll, R. K., & Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners’ mental models of ionic bonding. Journal of Research in Science Teaching, 40(5), 464–486. https://doi.org/10.1002/tea.10085
Damsi, M., & Suyanto, S. (2023). Systematic literature review: Multiple-tier diagnostic instruments in measuring student chemistry misconceptions. Jurnal Penelitian Pendidikan IPA, 9(5), 8–21. https://doi.org/10.29303/jppipa.v9i5.2600
Davidowitz, B., & Chittleborough, G. (2009). Linking the macroscopic and sub-microscopic levels: Diagrams. In Multiple representation in chemical education (pp. 169–191). Springer science business media. https://doi.org/10.1007/978-1-4020-8872-8_9
Devi, N. A., & Azra, F. (2023). Pengembangan instrumen tes diagnostik untuk melihat gambaran model mental peserta didik pada materi asam basa. Entalpi Pendidikan Kimia, 4(3), 16–26. https://doi.org/10.24036/epk.v4i3.345
Diantari, P. E. S., Suja, I. W., & Sastrawidana, I. D. K. (2018). Model mental siswa pada subpokok bahasan perubahan materi. Jurnal Pendidikan Kimia Undiksha, 2(2), 59–68. https://doi.org/10.23887/jjpk.v2i2.21168
Eky, V. E. C. I., Tika, N., & Muderawan, I. W. (2018). Analisis model mental siswa dalam penggunaan unit kegiatan belajar mandiri tentang hidrokarbon. Jurnal Pendidikan Kimia Undiksha, 2(1), 15–21. https://doi.org/10.23887/jjpk.v2i1.21183
Experenza, P., Isnaini, M., & Irmita, L. (2019). Pengaruh model pembelajaran think pair shareterhadap keterampilan berkomunikasi siswa pada larutan elektrolit dan non elektrolit. Orbital: Jurnal Pendidikan Kimia, 3(1), 81–93. https://doi.org/10.19109/ojpk.v3i1.3370
Gay, G. (2000). Culturally responsive teaching: Theory, research, and practice. Teachers College Press. Retrieved from https://eric.ed.gov/?redir=https%3a%2f%2fwww.tcpress.com%2fculturally-responsive-teaching-9780807758762
Halim, N. D. A., Ali, M. B., Yahaya, N., & Said, M. N. H. M. (2013). Mental model in learning chemical bonding: A preliminary study. Procedia - Social and Behavioral Sciences, 97, 224–228. https://doi.org/10.1016/j.sbspro.2013.10.226
Handayanti, Y., Setiabudi, A., & Nahadi, N. (2015). Analisis profil model mental siswa SMA pada materi laju reaksi. Jurnal Penelitian Dan Pembelajaran IPA, 1(1), 107–122. https://doi.org/10.30870/jppi.v1i1.329
Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352–381. https://doi.org/https://doi.org/10.1002/(SICI)1098-237X(200005)84:3%3C352::AID-SCE3%3E3.0.CO;2-J
Hilton, A., & Nichols, K. (2011). Representational classroom practices that contribute to students’ conceptual and representational understanding of chemical bonding. International Journal of Science Education, 33(16), 2215–2246. https://doi.org/10.1080/09500693.2010.543438
Ibrahim, S., Sihaloho, M., & Pikoli, M. (2022). Model mental siswa SMA dalam memahami konsep larutan elektrolit dan non-elektrolit. Lantanida Journal, 10(2), 138. https://doi.org/10.22373/lj.v10i2.14533
Ilyasa, D. G., & Dwiningsih, K. (2020). Model multimedia interaktif berbasis unity untuk meningkatkan hasil belajar ikatan ion. Jurnal Inovasi Pendidikan Kimia, 14(2), 2572–2584. https://doi.org/10.15294/jipk.v14i2.21501
Iqbal, M., Fatah, A. H., & Syarpin, S. (2020). Pengembangan multimedia pembelajaran larutan elektrolit dan non elektrolit berbasis multipel representasi menggunakan lectora inspire. Jurnal Ilmiah Kanderang Tingang, 11(1), 152–163. https://doi.org/10.37304/jikt.v11i1.83
Jansoon, N., Coll, R. K., & Somsook, E. (2009). Understanding mental models of dilution international journal of environmental & science education understanding mental models of dilution in thai students. International Journal of Environmental & Science Education, 4(2), 147–168. Retrieved from http://www.ijese.com/
Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x
Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701. https://doi.org/10.1021/ed070p701
Johnstone, A. H. (2000). Teaching of chemistry-logical or psychological? Chem. Educ. Res. Pract., 1(1), 9–15. https://doi.org/10.1039/A9RP90001B
Karpudewan, M., Treagust, D. F., Mocerino, M., Won, M., & Chandrasegaran, A. L. (2016). Investigating high school students’ understanding of chemical equilibrium concepts. The International Journal of Environmental and Science Education, 10(6), 845–863. https://doi.org/10.12973/ijese.2015.280a
Katmiati, S., & Rahmi, C. (2021). Tes diagnostik prediksi-observasi-eksplanasi (poe) reaksi kimia untuk menggali model mental siswa. Jurnal Zarah, 9(2), 97–104. https://doi.org/10.31629/zarah.v9i2.3191
Kirbulut, Z. D., & Geban, O. (2014). Using three-tier diagnostic test to assess students’ misconceptions of states of matter. EURASIA Journal of Mathematics, Science and Technology Education, 10(5), 509–521. https://doi.org/10.12973/eurasia.2014.1128a
Kiswandari, K., & Ridwan, A. (2020). Analysis of students mental models through POE (predict observe explain) method in salt hydrolisis material. JTK (Jurnal Tadris Kimiya), 5(1), 80–90. https://doi.org/10.15575/jtk.v5i1.5681
Kurnaz, M. A., & Eksi, C. (2015). An analysis of high school students’ mental models of solid friction in physics. Educational Sciences: Theory & Practice, 15(3), 787–795. https://doi.org/10.12738/estp.2015.3.2526
Laliyo, L. A. R. (2011). Model mental siswa dalam memahami siswa dalam memahami perubahan wujud zat. Jurnal Penelitian Dan Pendidikan, 8(1), 1–12. Retrieved from https://www.academia.edu/download/89121263/Model-Mental-Siswa-dalam-Memahami-Perubahan-Wujud-Zat.pdf
Lathifa, U. (2020). Improving chemistry teacher candidates’ mental models in the kinetics course using SiMaYang type II learning. Journal of Physics: Conference Series, 1594(1), 1–13. https://doi.org/10.1088/1742-6596/1594/1/012018
Light, G. J., & Swarat, S. (2009). Understanding learning progression in student conceptualization of atomic structure by variation theory for learning. The Proceedings of the Learning Progressions in Science Conference, 1–13. Retrieved from https://www.researchgate.net/publication/261287303
Mensah, A., & Morabe, O. N. (2018). Strategies used by grade 12 physical sciences students in solving chemical equilibrium problems. African Journal of Research in Mathematics, Science and Technology Education, 22(2), 174–185. https://doi.org/10.1080/18117295.2018.1475908
Meutia, F., Nurdin, N., & Winarni, S. (2021). Development of e-student worksheets based on multiple representations of factors affecting reaction rates. Jurnal Penelitian Pendidikan IPA, 7(2), 129. https://doi.org/10.29303/jppipa.v7i2.533
Mindayula, E., & Sutrisno, H. (2021). Multiple representation: The teacher’s perception in chemistry learning. Journal of Physics: Conference Series, 1806(1), 1–7. https://doi.org/10.1088/1742-6596/1806/1/012194
Murni, H. P., Azhar, M., Ellizar, E., Nizar, U. K., & Guspatni, G. (2022). Three levels of chemical representation-integrated and structured inquiry-based reaction rate module: Its effect on students’ mental models. Journal of Turkish Science Education, 19(3), 758–772. https://doi.org/10.36681/tused.2022.148
Ozcan, O., & Gercek, C. (2015). Students’ mental models of light to explain the compton effect. Procedia - Social and Behavioral Sciences, 191, 2195–2197. https://doi.org/10.1016/j.sbspro.2015.04.454
Özmen, H. (2008). Determination of students’ alternative conceptions about chemical equilibrium: A review of research and the case of Turkey. Chem. Educ. Res. Pract., 9(3), 225–233. https://doi.org/10.1039/B812411F
Park, E. J. (2006). Student perception and conceptual development as represented by student mental models of atomic structure (Dissertation) [The Ohio State University]. Retrieved from https://etd.ohiolink.edu/acprod/odb_etd/ws/send_file/send?accession=osu1150442841&disposition=inline
Park, E. J., & Light, G. (2009). Identifying atomic structure as a threshold concept: Student mental models and troublesomeness. International Journal of Science Education, 31(2), 233–258. https://doi.org/10.1080/09500690701675880
Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences. Wiley. https://doi.org/10.1002/9780470754887
Pikoli, M., Sukertini, K., & Isa, I. (2022). Analisis model mental siswa dalam mentransformasikan konsep laju reaksi melalui multipel representasi. Jambura Journal of Educational Chemistry, 4(1), 8–12. https://doi.org/10.34312/jjec.v4i1.13515
Praisri, A., & Faikhamta, C. (2020). Enhancing students’ mental models of chemical equilibrium through argumentation within model-based learning. International Journal of Learning, Teaching and Educational Research, 19(7), 121–142. https://doi.org/10.26803/ijlter.19.7.7
Pratiwi, N. L. Y. A., Suja, I. W., & Selamat, I. N. (2018). Model mental siswa kelas X SMA laboratorium Undiksha Singaraja tentang ikatan ion dan ikatan kovalen. Jurnal Pendidikan Kimia Undiksha, 2(2), 53–58. https://doi.org/10.23887/jjpk.v2i2.21166
Rahmi, C., Wiji, W., & Mulyani, S. (2020). Model mental miskonsepsi pada konsep kesetimbangan kelarutan. Lantanida Journal, 8(1), 64–95. https://doi.org/10.22373/lj.v8i1.7108
Raviolo, A., & Garritz, A. (2009). Analogies in the teaching of chemical equilibrium: A synthesis/analysis of the literature. Chem. Educ. Res. Pract., 10(1), 5–13. https://doi.org/10.1039/B901455C
Retiyanto, H. F., Putri, S. E., As-Shidiq, M. H., & Suyanta, S. (2023). Systematic literature review: Analysis of student’s critical thinking skills towards chemistry learning. Jurnal Penelitian Pendidikan IPA, 9(SpecialIssue), 113–121. https://doi.org/10.29303/jppipa.v9ispecialissue.6436
Sanjiwani, N., Muderawan, I., & Sudiana, I. (2018). Analisis kesulitan belajar kimia pada materi larutan penyangga di sma negeri 2 Banjar. Jurnal Pendidikan Kimia Undiksha, 2(2), 75–84. https://doi.org/10.23887/jjpk.v2i2.21170
Sari, D. A. (2021). Penerapan pembelajaran berbasis inquiry terhadap pemahaman konseptual, model mental dan sikap siswa. Orbital: Jurnal Pendidikan Kimia, 5(2), 137–150. https://doi.org/10.19109/ojpk.v5i2.9178
Sari, D. R., Yamtinah, S., Ariani, S. R. D., Saputro, S., Susanti VH, E., & Shidiq, A. S. (2022). Augmented reality media validity based on tetrahedral chemical representation with aiken validation index. Jurnal Penelitian Pendidikan IPA, 8(6), 3139–3145. https://doi.org/10.29303/jppipa.v8i6.2333
Sendur, G., Toprak, M., & Pekmez, E. S. (2011). How can secondary school students perceive chemical equilibrium? Journal of New World Sciences Academy, 6(2), 1512–1531. Retrieved from www.newwsa.com
Sinaga, K. (2022). Mental models in chemistry: prospective chemistry teachers’ mental models of chemical equilibrium. JPPS (Jurnal Penelitian Pendidikan Sains), 11(2), 113–129. https://doi.org/10.26740/jpps.v11n2.p113-129
Siregar, E. A., & Wiyarsi, A. (2023). Students’ mental models for molecule shapes concepts: A multiple-repesentation perspective. Jurnal Kependidikan Penelitian Inovasi Pembelajaran, 7(1), 58–67. https://doi.org/10.21831/jk.v7i1.59992
Sodanango, Y. P., Munzil, M., & Sumari, S. (2021). Analisis model mental peserta didik SMA dalam memahami konsep laju reaksi. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 6(10), 1543–1550. Retrieved from http://journal.um.ac.id/index.php/jptpp/
Suari, N. N. J. (2019). Profil model mental siswa tentang larutan elektrolit dan nonelektrolit. Jurnal Pendidikan Kimia Indonesia, 2(2), 59–63. https://doi.org/10.23887/jpk.v2i2.16615
Sucitra, I. G. N. B., Suja, I. W., Muderawan, I. W., & Nurlita, F. (2016). Profil model mental siswa tentang korelasi struktur molekul terhadap sifat senyawa organik. Prosiding Seminar Nasional MIPA 2016. Retrieved from https://ejournal.undiksha.ac.id/index.php/semnasmipa/article/view/10202
Suja, I. W. (2015). Model mental mahasiswa calon guru kimia dalam memahami bahan kajian stereokimia. JPI (Jurnal Pendidikan Indonesia), 4(2), 623–636. https://doi.org/10.23887/jpi-undiksha.v4i2.6059
Suja, I. W., Sudiana, I. K., Redhana, I. W., & Sudria, I. B. N. (2021). Mental model of prospective chemistry teachers on electrolyte and nonelectrolyte solutions. IOP Conference Series: Materials Science and Engineering, 1115(1), 012064. https://doi.org/10.1088/1757-899X/1115/1/012064
Suja, I. W., Yuanita, L., & Ibrahim, M. (2017). Implementation impact of the triplechem learning model on personal and social attitudes of chemistry prospective teachers. Journal of Education Research and Evaluation, 1(4), 269–275. https://doi.org/10.23887/jere.v1i4.12556
Sukmawati, W. (2019). Analisis level makroskopis, mikroskopis dan simbolik mahasiswa dalam memahami elektrokimia. Jurnal Inovasi Pendidikan IPA, 5(2). https://doi.org/10.21831/jipi.v5i2.27517
Sunyono, S. (2018). Mental models of atomic structure concepts of 11th grade chemistry students. Asia-Pacific Forum on Science Learning and Teaching, 19(1), 1–21. Retrieved from https://www.researchgate.net/publication/328491630
Supriadi, S., Ibnu, S., & Yahmin, Y. (2018). Analisis model mental mahasiswa pendidikan kimia dalam memahami berbagai jenis reaksi kimia. Jurnal Pijar Mipa, 13(1), 1–5. https://doi.org/10.29303/jpm.v13i1.433
Supriadi, S., Wildan, W., Hakim, A., Siahaan, J., Haris, M., & Ariani, S. (2022). Mental model and scientific reasoning ability of chemistry education students during Covid-19 Pandemic online learning. Jurnal Pijar Mipa, 17(3), 400–406. https://doi.org/10.29303/jpm.v17i3.3106
Suryani, I., Sunyono, S., & Efkar, T. (2015). Penerapan simayang tipe II untuk meningkatkan model mental dan penguasaan konsep siswa. Jurnal Pendidian Dan Pembelajaran Kimia, 4(3), 807–819. https://doi.org/10.23960/jppk
Tümay, H. (2014). Prospective chemistry teachers’ mental models of vapor pressure. Chem. Educ. Res. Pract., 15(3), 366–379. https://doi.org/10.1039/C4RP00024B
Ulinnaja, H., Subandi, & Muntholib. (2019). High school students’ mental models on chemical equilibrium. Jurnal Pendidikan Sains, 7(2), 58–64. Retrieved from http://journal.um.ac.id/index.php/jps/
Wang, C.-Y. (2007). The role of mental-modeling ability, content knowledge, and mental models in general chemistry students’ understanding about molecular polarity [University of Missouri--Columbia]. https://doi.org/10.32469/10355/4829
Wang, C.-Y., & Barrow, L. H. (2011). Characteristics and levels of sophistication: An analysis of chemistry students’ ability to think with mental models. Research in Science Education, 41(4), 561–586. https://doi.org/10.1007/s11165-010-9180-7
Wardah, A. C., & Wiyarsi, A. (2020). A systematic review: How are mental model of chemistry concepts? Universal Journal of Educational Research, 8(2), 332–345. https://doi.org/10.13189/ujer.2020.080202
Widarti, H. R., Yamtinah, S., Mawardi, M., Rokhim, D. A., Siddiq, A. S., Syafruddin, A. B., Sriwahyuni, T., Rachmanita, Z. A., Amalia, E. R. F., Baharsyah, A., & Anggraini, T. (2022). Analysis understanding participant educate to theory rate reaction. Jurnal Penelitian Pendidikan IPA, 8(6), 3027–3033. https://doi.org/10.29303/jppipa.v8i6.2462
Widayanti, Y. (2021). The Development of e-instrument to test students mental models on electrolyte and non-electrolyte solutions. Edukimia, 3(3), 174–177. https://doi.org/10.24036/ekj.v3.i3.a287
Wilandari, D. N., Ridwan, A., & Rahmawati, Y. (2018). Analisis model mental siswa pada materi larutan elektrolit dan nonelektrolit: Studi kasus di Pandeglang. JRPK: Jurnal Riset Pendidikan Kimia, 8(2), 25–35. https://doi.org/10.21009/JRPK.082.03
Yoni, A. A. S., Suja, I. W., & Karyasa, I. W. (2019). Profil model mental siswa sma kelas X tentang konsep-konsep dasar kimia pada kurikulum sains smp. Jurnal Pendidikan Kimia Indonesia, 2(2), 64–69. https://doi.org/10.23887/jpk.v2i2.16616
Yudani, N. W., Pasaribu, M., & Darmadi, I. W. (2016). Identifikasi model mental siswa pada materi perpindahan kalor di sma negeri 5 palu. JPFT (Jurnal Pendidikan Fisika Tadulako Online), 4(1), 10. https://doi.org/10.22487/j25805924.2016.v4.i1.5423
Zikri, T. A., & Handayani, S. (2024). Development of electronic student worksheets based on multiple representations for high school students on the topic of buffer solutions. Jurnal Penelitian Pendidikan IPA, 10(5), 2521–2529. https://doi.org/10.29303/jppipa.v10i5.5247
License
Copyright (c) 2024 Andi Tenri Uleng, Muthmainnah Damsi, Yanti Kumala Sembiring

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






