Vol. 10 No. 11 (2024): November
Open Access
Peer Reviewed

Mental Models in Chemistry Concept: A Systematic Review

Authors

Andi Tenri Uleng , Muthmainnah Damsi , Yanti Kumala Sembiring

DOI:

10.29303/jppipa.v10i11.6353

Published:

2024-11-25

Downloads

Abstract

Mental models in chemistry concepts are defined as student’s comprehension of three levels of chemical representations, including macroscopic, submicroscopic, and symbolic levels. This study aims to identify, review, and evaluate research concerning mental models in chemistry concepts through specific research questions. The research method used is a systematic literature review (SLR) by analyzing relevant articles from Google Scholar, Eric, Scopus, and Crosscref, focusing on publications from the the past decade (2013–2023). A total of 52 articles were obtained from the analysis based on the inclusion and exclusion criteria. The findings indicate that most studies aim to understand students' mental model profiles related to chemistry concepts. High school students are predominantly involved as research samples. The most used data collection tool is diagnostic tests. Mental models are primarily studied in physical chemistry, particularly in chemical equilibrium, adopting various theories, especially the Sendur, Toprak, and Pekmez (2010) model. Factors influencing the formation of students' mental models include internal factors such as prior knowledge, experiences, attitudes, and motivations, and external factors such as the environment, incomplete textbooks, and inappropriate teaching strategies.

Keywords:

Chemistry concepts Mental model Systematic literature review

References

Adbo, K., & Taber, K. S. (2009). Learners’ Mental Models of the Particle Nature of Matter: A study of 16‐year‐old Swedish science students. International Journal of Science Education, 31(6), 757–786. https://doi.org/10.1080/09500690701799383

Akaygun, S. (2016). Is the oxygen atom static or dynamic? The effect of generating animations on students’ mental models of atomic structure. Chemistry Education Research and Practice, 17(4), 788–807. https://doi.org/10.1039/C6RP00067C

Albaiti, A., Jukwati, & Lepa, A. A. (2022). Solubility and solubility product phenomena: Papua senior high school students mental model. Journal of Turkish Science Education, 19(2), 481–495. https://doi.org/10.36681/tused.2022.132

Amalia, F. R., Ibnu, S., Widarti, H. R., & Wuni, H. (2018). Students’ mental models of acid and base concepts taught using the cognitive apprenticeship learning model. Jurnal Pendidikan IPA Indonesia, 7(2), 187–192. https://doi.org/10.15294/jpii.v7i2.14264

Andina, R. E., Ridwan, A., & Rahmawati, Y. (2017). Analisis Model Mental Siswa pada Materi Hidrolisis Garam di Klaten. JRPK: Jurnal Riset Pendidikan Kimia, 7(2), 144–152. https://doi.org/10.21009/JRPK.072.08

Annisa, D., Sutrisno, H., & Widjajanti, E. (2023). Academic resilience in chemistry during covid-19: A systematic review. Jurnal Penelitian Pendidikan IPA, 9(11), 1111–1119. https://doi.org/10.29303/jppipa.v9i11.4354

Ariani, T. (2020). Analysis of students’ critical thinking skills in physics problems. Kasuari: Physics Education Journal (KPEJ), 3(1), 1–17. https://doi.org/10.37891/kpej.v3i1.119

Atikah, A., Habiddin, H., Nazriati, N., Rahayu, S., & Dasna, I. W. (2023). A systematic literature review: Model mental pada konsep-konsep kimia. JIPK, 17(2), 107–115. https://doi.org/10.15294/jipk.v17i2.39070

Baloyi, W. H., & Jordan, P. (2016). Systematic review as a research method in post-graduate nursing education. Health SA Gesondheid, 21, 120–128. https://doi.org/10.1016/j.hsag.2015.08.002

Becker, N., Stanford, C., Towns, M., & Cole, R. (2015). Translating across macroscopic, submicroscopic, and symbolic levels: the role of instructor facilitation in an inquiry-oriented physical chemistry class. Chemistry Education Research and Practice, 16(4), 769–785. https://doi.org/10.1039/C5RP00064E

Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In Developing Models in Science Education (pp. 119–135). Springer Netherlands. https://doi.org/10.1007/978-94-010-0876-1_6

Cahya, A. P., Wiyarsi, A., & Prodjosantoso, A. K. (2019). Mental model of prospective chemistry teacher on equilibrium constant and degree of dissociation. Jurnal Kependidikan: Penelitian Inovasi Pembelajaran, 3(2), 249–262. https://doi.org/10.21831/jk.v3i2.26696

Chittleborough, G. D. (2004). Science and mathematics education centre the role of teaching models and chemical representations in developing students’ mental models of chemical phenomena (Thesis) [Curtin University of Technology]. Retrieved from http://hdl.handle.net/20.500.11937/763

Chittleborough, G., & Treagust, D. F. (2007). The modelling ability of non-major chemistry students and their understanding of the sub-microscopic level. Chem. Educ. Res. Pract., 8(3), 274–292. https://doi.org/10.1039/B6RP90035F

Coll, R. K., & Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners’ mental models of ionic bonding. Journal of Research in Science Teaching, 40(5), 464–486. https://doi.org/10.1002/tea.10085

Damsi, M., & Suyanto, S. (2023). Systematic literature review: Multiple-tier diagnostic instruments in measuring student chemistry misconceptions. Jurnal Penelitian Pendidikan IPA, 9(5), 8–21. https://doi.org/10.29303/jppipa.v9i5.2600

Davidowitz, B., & Chittleborough, G. (2009). Linking the macroscopic and sub-microscopic levels: Diagrams. In Multiple representation in chemical education (pp. 169–191). Springer science business media. https://doi.org/10.1007/978-1-4020-8872-8_9

Devi, N. A., & Azra, F. (2023). Pengembangan instrumen tes diagnostik untuk melihat gambaran model mental peserta didik pada materi asam basa. Entalpi Pendidikan Kimia, 4(3), 16–26. https://doi.org/10.24036/epk.v4i3.345

Diantari, P. E. S., Suja, I. W., & Sastrawidana, I. D. K. (2018). Model mental siswa pada subpokok bahasan perubahan materi. Jurnal Pendidikan Kimia Undiksha, 2(2), 59–68. https://doi.org/10.23887/jjpk.v2i2.21168

Eky, V. E. C. I., Tika, N., & Muderawan, I. W. (2018). Analisis model mental siswa dalam penggunaan unit kegiatan belajar mandiri tentang hidrokarbon. Jurnal Pendidikan Kimia Undiksha, 2(1), 15–21. https://doi.org/10.23887/jjpk.v2i1.21183

Experenza, P., Isnaini, M., & Irmita, L. (2019). Pengaruh model pembelajaran think pair shareterhadap keterampilan berkomunikasi siswa pada larutan elektrolit dan non elektrolit. Orbital: Jurnal Pendidikan Kimia, 3(1), 81–93. https://doi.org/10.19109/ojpk.v3i1.3370

Gay, G. (2000). Culturally responsive teaching: Theory, research, and practice. Teachers College Press. Retrieved from https://eric.ed.gov/?redir=https%3a%2f%2fwww.tcpress.com%2fculturally-responsive-teaching-9780807758762

Halim, N. D. A., Ali, M. B., Yahaya, N., & Said, M. N. H. M. (2013). Mental model in learning chemical bonding: A preliminary study. Procedia - Social and Behavioral Sciences, 97, 224–228. https://doi.org/10.1016/j.sbspro.2013.10.226

Handayanti, Y., Setiabudi, A., & Nahadi, N. (2015). Analisis profil model mental siswa SMA pada materi laju reaksi. Jurnal Penelitian Dan Pembelajaran IPA, 1(1), 107–122. https://doi.org/10.30870/jppi.v1i1.329

Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352–381. https://doi.org/https://doi.org/10.1002/(SICI)1098-237X(200005)84:3%3C352::AID-SCE3%3E3.0.CO;2-J

Hilton, A., & Nichols, K. (2011). Representational classroom practices that contribute to students’ conceptual and representational understanding of chemical bonding. International Journal of Science Education, 33(16), 2215–2246. https://doi.org/10.1080/09500693.2010.543438

Ibrahim, S., Sihaloho, M., & Pikoli, M. (2022). Model mental siswa SMA dalam memahami konsep larutan elektrolit dan non-elektrolit. Lantanida Journal, 10(2), 138. https://doi.org/10.22373/lj.v10i2.14533

Ilyasa, D. G., & Dwiningsih, K. (2020). Model multimedia interaktif berbasis unity untuk meningkatkan hasil belajar ikatan ion. Jurnal Inovasi Pendidikan Kimia, 14(2), 2572–2584. https://doi.org/10.15294/jipk.v14i2.21501

Iqbal, M., Fatah, A. H., & Syarpin, S. (2020). Pengembangan multimedia pembelajaran larutan elektrolit dan non elektrolit berbasis multipel representasi menggunakan lectora inspire. Jurnal Ilmiah Kanderang Tingang, 11(1), 152–163. https://doi.org/10.37304/jikt.v11i1.83

Jansoon, N., Coll, R. K., & Somsook, E. (2009). Understanding mental models of dilution international journal of environmental & science education understanding mental models of dilution in thai students. International Journal of Environmental & Science Education, 4(2), 147–168. Retrieved from http://www.ijese.com/

Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x

Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701. https://doi.org/10.1021/ed070p701

Johnstone, A. H. (2000). Teaching of chemistry-logical or psychological? Chem. Educ. Res. Pract., 1(1), 9–15. https://doi.org/10.1039/A9RP90001B

Karpudewan, M., Treagust, D. F., Mocerino, M., Won, M., & Chandrasegaran, A. L. (2016). Investigating high school students’ understanding of chemical equilibrium concepts. The International Journal of Environmental and Science Education, 10(6), 845–863. https://doi.org/10.12973/ijese.2015.280a

Katmiati, S., & Rahmi, C. (2021). Tes diagnostik prediksi-observasi-eksplanasi (poe) reaksi kimia untuk menggali model mental siswa. Jurnal Zarah, 9(2), 97–104. https://doi.org/10.31629/zarah.v9i2.3191

Kirbulut, Z. D., & Geban, O. (2014). Using three-tier diagnostic test to assess students’ misconceptions of states of matter. EURASIA Journal of Mathematics, Science and Technology Education, 10(5), 509–521. https://doi.org/10.12973/eurasia.2014.1128a

Kiswandari, K., & Ridwan, A. (2020). Analysis of students mental models through POE (predict observe explain) method in salt hydrolisis material. JTK (Jurnal Tadris Kimiya), 5(1), 80–90. https://doi.org/10.15575/jtk.v5i1.5681

Kurnaz, M. A., & Eksi, C. (2015). An analysis of high school students’ mental models of solid friction in physics. Educational Sciences: Theory & Practice, 15(3), 787–795. https://doi.org/10.12738/estp.2015.3.2526

Laliyo, L. A. R. (2011). Model mental siswa dalam memahami siswa dalam memahami perubahan wujud zat. Jurnal Penelitian Dan Pendidikan, 8(1), 1–12. Retrieved from https://www.academia.edu/download/89121263/Model-Mental-Siswa-dalam-Memahami-Perubahan-Wujud-Zat.pdf

Lathifa, U. (2020). Improving chemistry teacher candidates’ mental models in the kinetics course using SiMaYang type II learning. Journal of Physics: Conference Series, 1594(1), 1–13. https://doi.org/10.1088/1742-6596/1594/1/012018

Light, G. J., & Swarat, S. (2009). Understanding learning progression in student conceptualization of atomic structure by variation theory for learning. The Proceedings of the Learning Progressions in Science Conference, 1–13. Retrieved from https://www.researchgate.net/publication/261287303

Mensah, A., & Morabe, O. N. (2018). Strategies used by grade 12 physical sciences students in solving chemical equilibrium problems. African Journal of Research in Mathematics, Science and Technology Education, 22(2), 174–185. https://doi.org/10.1080/18117295.2018.1475908

Meutia, F., Nurdin, N., & Winarni, S. (2021). Development of e-student worksheets based on multiple representations of factors affecting reaction rates. Jurnal Penelitian Pendidikan IPA, 7(2), 129. https://doi.org/10.29303/jppipa.v7i2.533

Mindayula, E., & Sutrisno, H. (2021). Multiple representation: The teacher’s perception in chemistry learning. Journal of Physics: Conference Series, 1806(1), 1–7. https://doi.org/10.1088/1742-6596/1806/1/012194

Murni, H. P., Azhar, M., Ellizar, E., Nizar, U. K., & Guspatni, G. (2022). Three levels of chemical representation-integrated and structured inquiry-based reaction rate module: Its effect on students’ mental models. Journal of Turkish Science Education, 19(3), 758–772. https://doi.org/10.36681/tused.2022.148

Ozcan, O., & Gercek, C. (2015). Students’ mental models of light to explain the compton effect. Procedia - Social and Behavioral Sciences, 191, 2195–2197. https://doi.org/10.1016/j.sbspro.2015.04.454

Özmen, H. (2008). Determination of students’ alternative conceptions about chemical equilibrium: A review of research and the case of Turkey. Chem. Educ. Res. Pract., 9(3), 225–233. https://doi.org/10.1039/B812411F

Park, E. J. (2006). Student perception and conceptual development as represented by student mental models of atomic structure (Dissertation) [The Ohio State University]. Retrieved from https://etd.ohiolink.edu/acprod/odb_etd/ws/send_file/send?accession=osu1150442841&disposition=inline

Park, E. J., & Light, G. (2009). Identifying atomic structure as a threshold concept: Student mental models and troublesomeness. International Journal of Science Education, 31(2), 233–258. https://doi.org/10.1080/09500690701675880

Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences. Wiley. https://doi.org/10.1002/9780470754887

Pikoli, M., Sukertini, K., & Isa, I. (2022). Analisis model mental siswa dalam mentransformasikan konsep laju reaksi melalui multipel representasi. Jambura Journal of Educational Chemistry, 4(1), 8–12. https://doi.org/10.34312/jjec.v4i1.13515

Praisri, A., & Faikhamta, C. (2020). Enhancing students’ mental models of chemical equilibrium through argumentation within model-based learning. International Journal of Learning, Teaching and Educational Research, 19(7), 121–142. https://doi.org/10.26803/ijlter.19.7.7

Pratiwi, N. L. Y. A., Suja, I. W., & Selamat, I. N. (2018). Model mental siswa kelas X SMA laboratorium Undiksha Singaraja tentang ikatan ion dan ikatan kovalen. Jurnal Pendidikan Kimia Undiksha, 2(2), 53–58. https://doi.org/10.23887/jjpk.v2i2.21166

Rahmi, C., Wiji, W., & Mulyani, S. (2020). Model mental miskonsepsi pada konsep kesetimbangan kelarutan. Lantanida Journal, 8(1), 64–95. https://doi.org/10.22373/lj.v8i1.7108

Raviolo, A., & Garritz, A. (2009). Analogies in the teaching of chemical equilibrium: A synthesis/analysis of the literature. Chem. Educ. Res. Pract., 10(1), 5–13. https://doi.org/10.1039/B901455C

Retiyanto, H. F., Putri, S. E., As-Shidiq, M. H., & Suyanta, S. (2023). Systematic literature review: Analysis of student’s critical thinking skills towards chemistry learning. Jurnal Penelitian Pendidikan IPA, 9(SpecialIssue), 113–121. https://doi.org/10.29303/jppipa.v9ispecialissue.6436

Sanjiwani, N., Muderawan, I., & Sudiana, I. (2018). Analisis kesulitan belajar kimia pada materi larutan penyangga di sma negeri 2 Banjar. Jurnal Pendidikan Kimia Undiksha, 2(2), 75–84. https://doi.org/10.23887/jjpk.v2i2.21170

Sari, D. A. (2021). Penerapan pembelajaran berbasis inquiry terhadap pemahaman konseptual, model mental dan sikap siswa. Orbital: Jurnal Pendidikan Kimia, 5(2), 137–150. https://doi.org/10.19109/ojpk.v5i2.9178

Sari, D. R., Yamtinah, S., Ariani, S. R. D., Saputro, S., Susanti VH, E., & Shidiq, A. S. (2022). Augmented reality media validity based on tetrahedral chemical representation with aiken validation index. Jurnal Penelitian Pendidikan IPA, 8(6), 3139–3145. https://doi.org/10.29303/jppipa.v8i6.2333

Sendur, G., Toprak, M., & Pekmez, E. S. (2011). How can secondary school students perceive chemical equilibrium? Journal of New World Sciences Academy, 6(2), 1512–1531. Retrieved from www.newwsa.com

Sinaga, K. (2022). Mental models in chemistry: prospective chemistry teachers’ mental models of chemical equilibrium. JPPS (Jurnal Penelitian Pendidikan Sains), 11(2), 113–129. https://doi.org/10.26740/jpps.v11n2.p113-129

Siregar, E. A., & Wiyarsi, A. (2023). Students’ mental models for molecule shapes concepts: A multiple-repesentation perspective. Jurnal Kependidikan Penelitian Inovasi Pembelajaran, 7(1), 58–67. https://doi.org/10.21831/jk.v7i1.59992

Sodanango, Y. P., Munzil, M., & Sumari, S. (2021). Analisis model mental peserta didik SMA dalam memahami konsep laju reaksi. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 6(10), 1543–1550. Retrieved from http://journal.um.ac.id/index.php/jptpp/

Suari, N. N. J. (2019). Profil model mental siswa tentang larutan elektrolit dan nonelektrolit. Jurnal Pendidikan Kimia Indonesia, 2(2), 59–63. https://doi.org/10.23887/jpk.v2i2.16615

Sucitra, I. G. N. B., Suja, I. W., Muderawan, I. W., & Nurlita, F. (2016). Profil model mental siswa tentang korelasi struktur molekul terhadap sifat senyawa organik. Prosiding Seminar Nasional MIPA 2016. Retrieved from https://ejournal.undiksha.ac.id/index.php/semnasmipa/article/view/10202

Suja, I. W. (2015). Model mental mahasiswa calon guru kimia dalam memahami bahan kajian stereokimia. JPI (Jurnal Pendidikan Indonesia), 4(2), 623–636. https://doi.org/10.23887/jpi-undiksha.v4i2.6059

Suja, I. W., Sudiana, I. K., Redhana, I. W., & Sudria, I. B. N. (2021). Mental model of prospective chemistry teachers on electrolyte and nonelectrolyte solutions. IOP Conference Series: Materials Science and Engineering, 1115(1), 012064. https://doi.org/10.1088/1757-899X/1115/1/012064

Suja, I. W., Yuanita, L., & Ibrahim, M. (2017). Implementation impact of the triplechem learning model on personal and social attitudes of chemistry prospective teachers. Journal of Education Research and Evaluation, 1(4), 269–275. https://doi.org/10.23887/jere.v1i4.12556

Sukmawati, W. (2019). Analisis level makroskopis, mikroskopis dan simbolik mahasiswa dalam memahami elektrokimia. Jurnal Inovasi Pendidikan IPA, 5(2). https://doi.org/10.21831/jipi.v5i2.27517

Sunyono, S. (2018). Mental models of atomic structure concepts of 11th grade chemistry students. Asia-Pacific Forum on Science Learning and Teaching, 19(1), 1–21. Retrieved from https://www.researchgate.net/publication/328491630

Supriadi, S., Ibnu, S., & Yahmin, Y. (2018). Analisis model mental mahasiswa pendidikan kimia dalam memahami berbagai jenis reaksi kimia. Jurnal Pijar Mipa, 13(1), 1–5. https://doi.org/10.29303/jpm.v13i1.433

Supriadi, S., Wildan, W., Hakim, A., Siahaan, J., Haris, M., & Ariani, S. (2022). Mental model and scientific reasoning ability of chemistry education students during Covid-19 Pandemic online learning. Jurnal Pijar Mipa, 17(3), 400–406. https://doi.org/10.29303/jpm.v17i3.3106

Suryani, I., Sunyono, S., & Efkar, T. (2015). Penerapan simayang tipe II untuk meningkatkan model mental dan penguasaan konsep siswa. Jurnal Pendidian Dan Pembelajaran Kimia, 4(3), 807–819. https://doi.org/10.23960/jppk

Tümay, H. (2014). Prospective chemistry teachers’ mental models of vapor pressure. Chem. Educ. Res. Pract., 15(3), 366–379. https://doi.org/10.1039/C4RP00024B

Ulinnaja, H., Subandi, & Muntholib. (2019). High school students’ mental models on chemical equilibrium. Jurnal Pendidikan Sains, 7(2), 58–64. Retrieved from http://journal.um.ac.id/index.php/jps/

Wang, C.-Y. (2007). The role of mental-modeling ability, content knowledge, and mental models in general chemistry students’ understanding about molecular polarity [University of Missouri--Columbia]. https://doi.org/10.32469/10355/4829

Wang, C.-Y., & Barrow, L. H. (2011). Characteristics and levels of sophistication: An analysis of chemistry students’ ability to think with mental models. Research in Science Education, 41(4), 561–586. https://doi.org/10.1007/s11165-010-9180-7

Wardah, A. C., & Wiyarsi, A. (2020). A systematic review: How are mental model of chemistry concepts? Universal Journal of Educational Research, 8(2), 332–345. https://doi.org/10.13189/ujer.2020.080202

Widarti, H. R., Yamtinah, S., Mawardi, M., Rokhim, D. A., Siddiq, A. S., Syafruddin, A. B., Sriwahyuni, T., Rachmanita, Z. A., Amalia, E. R. F., Baharsyah, A., & Anggraini, T. (2022). Analysis understanding participant educate to theory rate reaction. Jurnal Penelitian Pendidikan IPA, 8(6), 3027–3033. https://doi.org/10.29303/jppipa.v8i6.2462

Widayanti, Y. (2021). The Development of e-instrument to test students mental models on electrolyte and non-electrolyte solutions. Edukimia, 3(3), 174–177. https://doi.org/10.24036/ekj.v3.i3.a287

Wilandari, D. N., Ridwan, A., & Rahmawati, Y. (2018). Analisis model mental siswa pada materi larutan elektrolit dan nonelektrolit: Studi kasus di Pandeglang. JRPK: Jurnal Riset Pendidikan Kimia, 8(2), 25–35. https://doi.org/10.21009/JRPK.082.03

Yoni, A. A. S., Suja, I. W., & Karyasa, I. W. (2019). Profil model mental siswa sma kelas X tentang konsep-konsep dasar kimia pada kurikulum sains smp. Jurnal Pendidikan Kimia Indonesia, 2(2), 64–69. https://doi.org/10.23887/jpk.v2i2.16616

Yudani, N. W., Pasaribu, M., & Darmadi, I. W. (2016). Identifikasi model mental siswa pada materi perpindahan kalor di sma negeri 5 palu. JPFT (Jurnal Pendidikan Fisika Tadulako Online), 4(1), 10. https://doi.org/10.22487/j25805924.2016.v4.i1.5423

Zikri, T. A., & Handayani, S. (2024). Development of electronic student worksheets based on multiple representations for high school students on the topic of buffer solutions. Jurnal Penelitian Pendidikan IPA, 10(5), 2521–2529. https://doi.org/10.29303/jppipa.v10i5.5247

Author Biographies

Andi Tenri Uleng, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Muthmainnah Damsi, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Yanti Kumala Sembiring, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Uleng, A. T., Damsi, M., & Sembiring, Y. K. (2024). Mental Models in Chemistry Concept: A Systematic Review. Jurnal Penelitian Pendidikan IPA, 10(11), 764–777. https://doi.org/10.29303/jppipa.v10i11.6353