Vol. 10 No. 2 (2024): February
Open Access
Peer Reviewed

Bibliometric Analysis: Collaboration Networks In Discovery Learning Research

Authors

Andi Suparjo , Edwin Musdi , Yerizon , I Made Arnawa

DOI:

10.29303/jppipa.v10i2.7002

Published:

2024-02-28

Downloads

Abstract

This research identifies publications related to Discovery learning. Discovery learning is a learning model that encourages active learning in students through self-discovery and research so that the results achieved are long-lasting and difficult to forget. This research aims to identify and analyze articles researching Discovery Learning that have been published in several reputable international journals published in the 2014-2023 period, which was carried out using bibliometric studies. Bibliometric analysis produced four findings: publications about Discovery Learning in Scopus-indexed journals have been in a fluid and balanced pattern every year for the last ten years; 328 of the ten journals producing the most articles have been published. The top-ranked journal published 15 articles, and the tenth-ranked journal published five articles; The most citations occurred in articles published in 2020 with a total of 1101 citations. The most cited article was written by B.R. Goldsmith with 241 citations; The author's keywords that are most frequently used in the top three are discovery, machine, and machine learning

Keywords:

Bibliometrics Discovery learning Scopus database

References

Ariftian, I., Madjdi, A. H., & Murtono, M. (2021). Science-Based Quantum Learning Models in Elementary School. Journal of Physics: Conference Series, 1823(1), 012085. https://doi.org/10.1088/

-6596/1823/1/012085

Ayuningsih, S., & Muna, L. N. (2023). Influence of the Discovery Learning Learning Model on Critical Thinking Abilities and Student Learning Outcomes in Buffer Solution Material. Jurnal Penelitian Pendidikan IPA, 9(11), 9438–9446. https://doi.org/10.29303/jppipa.v9i11.4469

BariÄević, M., & Luić, L. (2023). From Active Learning to Innovative Thinking: The Influence of Learning the Design Thinking Process among Students. Education Sciences, 13(5), 455. https://doi.org/

3390/educsci13050455

Brennan, R. W., Nelson, N., & Paul, R. (2021). Estimating the Effect of Timetabling Decisions on the Spread of SARS-CoV-2 in Medium-to-Large Engineering Schools in Canada: An Agent-Based Modeling Study. CMAJ Open, 9(4), E1252–E1259. https://doi.org/10.9778/cmajo.20200280

Buckley, P., & Lee, P. (2021). The Impact of Extra-Curricular Activity on the Student Experience. Active Learning in Higher Education, 22(1), 37–48. https://doi.org/10.1177/1469787418808988

Cai, C., Wang, S., Xu, Y., Zhang, W., Tang, K., Ouyang, Q., Lai, L., & Pei, J. (2020). Transfer Learning for Drug Discovery. Journal of Medicinal Chemistry, 63(16), 8683–8694. https://doi.org/10.1021/

acs.jmedchem.9b02147

Chusni, M. M., Saputro, S., Suranto, S., & Rahardjo, S. B. (2020). The Potential of Discovery Learning Models to Empower Students’ Critical Thinking Skills. Journal of Physics: Conference Series, 1464(1), 012036. https://doi.org/10.1088/1742-6596/1464/

/012036

Collins, C. S., & Stockton, C. M. (2018). The Central Role of Theory in Qualitative Research. International Journal of Qualitative Methods, 17(1), 160940691879747. https://doi.org/10.1177/160940

Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., & Osher, D. (2020). Implications for Educational Practice of the Science of Learning and Development. Applied Developmental Science, 24(2), 97–140. https://doi.org/10.1080/10888691.

1537791

Deiana, A. M., Tran, N., Agar, J., Blott, M., Di Guglielmo, G., Duarte, J., Harris, P., Hauck, S., Liu, M., Neubauer, M. S., Ngadiuba, J., Ogrenci-Memik, S., Pierini, M., Aarrestad, T., Bähr, S., Becker, J., Berthold, A.-S., Bonventre, R. J., Müller Bravo, T. E., & Warburton, T. K. (2022). Applications and Techniques for Fast Machine Learning in Science. Frontiers in Big Data, 5, 787421. https://doi.org/10.3389/fdata.2022.787421

Getie, A. S. (2020). Factors Affecting the Attitudes of Students towards Learning English as a Foreign Language. Cogent Education, 7(1), 1738184. https://doi.org/10.1080/2331186X.2020.1738184

Goldsmith, B. R., Esterhuizen, J., Liu, J. X., Bartel, C. J., & Sutton, C. (2018). Machine Learning for Heterogeneous Catalyst Design and Discovery. AIChE Journal, 64(7), 2311–2323. https://doi.org/

1002/aic.16198

Guo, Y., He, X., Su, Y., Dai, Y., Xie, M., Yang, S., Chen, J., Wang, K., Zhou, D., & Wang, C. (2021). Machine-Learning-Guided Discovery and Optimization of Additives in Preparing Cu Catalysts for CO2 Reduction. Journal of the American Chemical Society, 143(15), 5755–5762. https://doi.org/10.1021/jacs.1c00339

Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the Role of Digital Technologies in Education: A Review. Sustainable Operations and Computers, 3, 275–285. https://doi.org/10.1016/j.susoc.2022.05.004

Hariram, N. P., Mekha, K. B., Suganthan, V., & Sudhakar, K. (2023). Sustainalism: An Integrated Socio-Economic-Environmental Model to Address Sustainable Development and Sustainability. Sustainability, 15(13), 10682. https://doi.org/

3390/su151310682

Janet, J. P., Chan, L., & Kulik, H. J. (2018). Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network. Journal of Physical Chemistry Letters, 9(5), 1064–1071. https://doi.org/10.1021/acs.jpclett.8b00170

Jayanto, I. F., Noer, S. H., & Caswita, C. (2019). Development of Guided Discovery Learning to Improve Reflective Thinking. International Journal of Trends in Mathematics Education Research, 2(2), 106–111. https://doi.org/10.33122/ijtmer.v2i2.116

José De Oliveira, O., Francisco Da Silva, F., Juliani, F., César Ferreira Motta Barbosa, L., & Vieira Nunhes, T. (2019). Bibliometric Method for Mapping the State-of-the-Art and Identifying Research Gaps and Trends in Literature: An Essential Instrument to Support the Development of Scientific Projects. In S. Kunosic & E. Zerem (Eds.), Scientometrics Recent Advances. IntechOpen. https://doi.org/

5772/intechopen.85856

Kennedy, J., Baxter, P., & Belpaeme, T. (2015). Comparing Robot Embodiments in a Guided Discovery Learning Interaction with Children. International Journal of Social Robotics, 7(2), 293–308. https://doi.org/10.1007/s12369-014-0277-4

Kim, S., Raza, M., & Seidman, E. (2019). Improving 21st-Century Teaching Skills: The Key to Effective 21st-Century Learners. Research in Comparative and International Education, 14(1), 99–117. https://doi.org/10.1177/1745499919829214

Legrain, F., Carrete, J., Van Roekeghem, A., Madsen, G. K. H., & Mingo, N. (2018). Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus Ab Initio Methods. Journal of Physical Chemistry B, 122(2), 625–632. https://doi.org/10.1021/acs.jpcb.7b05296

Liu, Y., Zhao, T., Ju, W., & Shi, S. (2017). Materials Discovery and Design Using Machine Learning. Journal of Materiomics, 3(3), 159–177. https://

doi.org/10.1016/j.jmat.2017.08.002

Lodge, J. M., Kennedy, G., Lockyer, L., Arguel, A., & Pachman, M. (2018). Understanding Difficulties and Resulting Confusion in Learning: An Integrative Review. Frontiers in Education, 3, 49. https://doi.org/10.3389/feduc.2018.00049

López, F., Contreras, M., Nussbaum, M., Paredes, R., Gelerstein, D., Alvares, D., & Chiuminatto, P. (2023). Developing Critical Thinking in Technical and Vocational Education and Training. Education Sciences, 13(6), 590. https://doi.org/10.3390/

educsci13060590

Mahmood, A., Irfan, A., & Wang, J. L. (2022). Machine Learning and Molecular Dynamics Simulation-Assisted Evolutionary Design and Discovery Pipeline to Screen Efficient Small Molecule Acceptors for PTB7-Th-Based Organic Solar Cells with Over 15% Efficiency. Journal of Materials Chemistry A, 10(8), 4170–4180. https://doi.org/

1039/d1ta09762h

Mensah, J. (2019). Sustainable Development: Meaning, History, Principles, Pillars, and Implications for Human Action: Literature Review. Cogent Social Sciences, 5(1), 1653531. https://doi.org/10.1080/

2019.1653531

Muhayati, E. I., Trisnawaty, W., & Subaidah, S. (2023). Implementation of Discovery Learning Models to Improve Student's Mathematic Learning Outcomes. Jurnal Penelitian Pendidikan IPA, 9(5), 3975–3980. https://doi.org/10.29303/jppipa.v9i5.

Munawar, H. S., Qayyum, S., Ullah, F., & Sepasgozar, S. (2020). Big Data and Its Applications in Smart Real Estate and the Disaster Management Life Cycle: A Systematic Analysis. Big Data and Cognitive Computing, 4(2), 4. https://doi.org/10.3390/

bdcc4020004

Payu, C. S. (2023). Effect of Experiment-Based Discovery Learning Model on Psychomotor Learning Outcomes in Static Fluid Materials. Jurnal Penelitian Pendidikan IPA, 9(5), 2647–2652. https://doi.org/10.29303/jppipa.v9i5.3573

Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of Inquiry-Based Learning: Definitions and the Inquiry Cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003

Raslan, G. (2023). Critical Thinking Skills Profile of High School Students in AP Chemistry Learning. In K. Al Marri, F. Mir, S. David, & A. Aljuboori (Eds.), BUiD Doctoral Research Conference 2022 (Vol. 320, pp. 79–96). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-27462-6_8

Rejeb, A., Rejeb, K., Appolloni, A., Kayikci, Y., & Iranmanesh, M. (2023). The Landscape of Public Procurement Research: A Bibliometric Analysis and Topic Modeling Based on Scopus. Journal of Public Procurement, 23(2), 145–178. https://doi.org/10.1108/JOPP-06-2022-0031

Serdyukov, P. (2017). Innovation in Education: What Works, What Doesn’t, and What To Do About It? Journal of Research in Innovative Teaching & Learning, 10(1), 4–33. https://doi.org/10.1108/JRIT-10-2016-0007

Sewagegn, A., & Diale, B. M. (2019). Empowering Learners Using Active Learning in Higher Education Institutions. In S. Manuel Brito (Ed.), Active Learning—Beyond the Future. IntechOpen. https://doi.org/10.5772/intechopen.80838

Shmilovich, K., Mansbach, R. A., Sidky, H., Dunne, O. E., Panda, S. S., Tovar, J. D., & Ferguson, A. L. (2020). Discovery of Self-Assembling π‑Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation Published.

Sinaga, B., Sitorus, J., & Situmeang, T. (2023). The Influence of Students’ Problem-Solving Understanding and Results of Students’ Mathematics Learning. Frontiers in Education, 8, 1088556. https://doi.org/10.3389/feduc.2023.

Snyder, H. (2019). Literature Review as a Research Methodology: An Overview and Guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Spellings, M., & Glotzer, S. C. (2018). Machine Learning for Crystal Identification and Discovery. AIChE Journal, 64(6), 2198–2206. https://doi.org/10.1002/

aic.16157

Tufail, S., Riggs, H., Tariq, M., & Sarwat, A. I. (2023). Advancements and Challenges in Machine Learning: A Comprehensive Review of Models, Libraries, Applications, and Algorithms. Electronics, 12(8), 1789. https://doi.org/10.3390/

electronics12081789

Ulissi, Z. W., Singh, A. R., Tsai, C., & Nørskov, J. K. (2016). Automated Discovery and Construction of Surface Phase Diagrams Using Machine Learning. Journal of Physical Chemistry Letters, 7(19), 3931–3935. https://doi.org/10.1021/acs.jpclett.6b01254

Ullah, R., Asghar, I., & Griffiths, M. G. (2022). An Integrated Methodology for Bibliometric Analysis: A Case Study of Internet of Things in Healthcare Applications. Sensors, 23(1), 67. https://doi.org/

3390/s23010067

Wu, Y.-Y., & Chou, W.-H. (2023). A Bibliometric Analysis to Identify Research Trends in Intervention Programs for Smartphone Addiction. International Journal of Environmental Research and Public Health, 20(5), 3840. https://doi.org/

3390/ijerph20053840

Author Biographies

Andi Suparjo, Universitas Negeri Padang

Author Origin : Indonesia

Program Studi Magister Pendidikan Matematika

Edwin Musdi, Universitas Negeri Padang

Author Origin : Indonesia

Program Studi Magister Pendidikan Matematika

Yerizon, Universitas Negeri Padang

Author Origin : Indonesia

Program Studi Magister Pendidikan Matematika

I Made Arnawa, Universitas Negeri Padang

Author Origin : Indonesia

Program Studi Magister Pendidikan Matematika

Downloads

Download data is not yet available.

How to Cite

Suparjo, A., Musdi, E. ., Yerizon, Y., & Arnawa, I. M. . (2024). Bibliometric Analysis: Collaboration Networks In Discovery Learning Research. Jurnal Penelitian Pendidikan IPA, 10(2), 45–53. https://doi.org/10.29303/jppipa.v10i2.7002