Development of an Automatic Portable Calibrator for Tipping Bucket Rain Gauge (TBRG) Using a Load Cell and Simple Water Sensor

Authors

Dani Zulfia Rohmah , Jasruddin , Subaer , Bagus Satrio Utomo

DOI:

10.29303/jppipa.v10i9.7634

Published:

2024-09-25

Issue:

Vol. 10 No. 9 (2024): September

Keywords:

Arduino Mega2560, calibrator, load cell, and tipping bucket rain gauge

Research Articles

Downloads

How to Cite

Rohmah, D. Z., Jasruddin, Subaer, & Utomo, B. S. (2024). Development of an Automatic Portable Calibrator for Tipping Bucket Rain Gauge (TBRG) Using a Load Cell and Simple Water Sensor. Jurnal Penelitian Pendidikan IPA, 10(9), 6746–6755. https://doi.org/10.29303/jppipa.v10i9.7634

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The tipping bucket rain gauge is an automatic rain gauge that can measure rain intensity in mm/hour. Accurate measurement of rain intensity requires calibration of the rain gauge to ensure traceability. Calibration of a tipping bucket rain gauge is related to the volume of water as a calibration medium and time so as to produce a discharge that can be converted into rain intensity. Technological developments can make tipping bucket rain gauge calibration automatic by utilizing an Arduino Mega2560 microcontroller, a load cell and a simple water sensor based on the LM393 comparator IC, and combined with a compact design printed using a three-dimensional printer so that it can be used for ex-situ calibration. The data produced by this tool can be downloaded via the application that was built and produces a file in Excel form.

References

Abdullahi, S. I., Habaebi, M. H., & Malik, N. A. (2019). Capacitive electrode sensor implanted on a printed circuit board designed for continuous water level measurement. Bulletin of Electrical Engineering and Informatics, 8(2), 450–459. https://doi.org/10.11591/eei.v8i2.1515

Agustine, L., Astarini, M. I. A., Manungkalit, M., Amadeus, J., & Pranjoto, H. (2024). The impact assessment of automated drip infusion control using weighing scale and pinch method on subjects. E3S Web of Conferences, 475, 02002. https://doi.org/10.1051/e3sconf/202447502002

Angadi, S. V., & Jackson, R. L. (2022). A critical review on the solenoid valve reliability, performance and remaining useful life including its industrial applications. Engineering Failure Analysis, 136, 106231. https://doi.org/10.1016/j.engfailanal.2022.106231

Basuki, T. M., Nugroho, H. Y. S. H., Indrajaya, Y., Pramono, I. B., Nugroho, N. P., Supangat, A. B., Indrawati, D. R., Savitri, E., Wahyuningrum, N., Purwanto, Cahyono, S. A., Putra, P. B., Adi, R. N., Nugroho, A. W., Auliyani, D., Wuryanta, A., Riyanto, H. D., Harjadi, B., Yudilastyantoro, C., … Simarmata, D. P. (2022). Improvement of Integrated Watershed Management in Indonesia for Mitigation and Adaptation to Climate Change: A Review. Sustainability, 14(16), 9997. https://doi.org/10.3390/su14169997

Bello, V., Bodo, E., & Merlo, S. (2023). Optical Multi-Parameter Measuring System for Fluid and Air Bubble Recognition. Sensors, 23(15), 6684. https://doi.org/10.3390/s23156684

Brown, S. L., Goulsbra, C. S., Evans, M. G., Heath, T., & Shuttleworth, E. (2020). Low cost CO2 sensing: A simple microcontroller approach with calibration and field use. HardwareX, 8, e00136. https://doi.org/10.1016/j.ohx.2020.e00136

Cantonati, Poikane, Pringle, Stevens, Turak, Heino, Richardson, Bolpagni, Borrini, Cid, Čtvrtlíková, Galassi, Hájek, Hawes, Levkov, Naselli-Flores, Saber, Cicco, Fiasca, … Znachor. (2020). Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water, 12(1), 260. https://doi.org/10.3390/w12010260

Choi, J. H., Chang, K.-H., Kim, K.-E., & Bang, K. S. (2023). Improvement of Rainfall Measurements by Using a Dual Tipping Bucket Rain Gauge. Asia-Pacific Journal of Atmospheric Sciences, 59(2), 271–280. https://doi.org/10.1007/s13143-022-00295-0

Dervos, N. A., & Baltas, E. A. (2024). Development of Experimental Low-Cost Rain Gauges and their Evaluation During a High Intensity Storm Event. Environmental Processes, 11(1), 6. https://doi.org/10.1007/s40710-024-00686-7

Dunkerley, D. (2024). Judging Rainfall Intensity from Inter-Tip Times: Comparing ‘Straight-Through’ and Syphon-Equipped Tipping-Bucket Rain Gauge Performance. Water, 16(7), 998. https://doi.org/10.3390/w16070998

Hakim, A. L., & Dewi, R. (2021). Automatic Rain Detection System Based on Digital Images of CCTV Cameras Using Convolutional Neural Network Method. IOP Conference Series: Earth and Environmental Science, 893(1), 012048. https://doi.org/10.1088/1755-1315/893/1/012048

Hamid, A., Bhat, S. U., & Jehangir, A. (2020). Local determinants influencing stream water quality. Applied Water Science, 10(1), 24. https://doi.org/10.1007/s13201-019-1043-4

Huang, W., Yun, H., Huang, W., Zhang, B., & Lyu, X. (2021). On the Influences of Air Bubbles on Water Flow in a Two-Dimensional Channel. Mathematical Problems in Engineering, 2021, 1–15. https://doi.org/10.1155/2021/6818673

Islam, Md. A., Yu, B., & Cartwright, N. (2023). Bartlett–Lewis Model Calibrated with Satellite-Derived Precipitation Data to Estimate Daily Peak 15 Min Rainfall Intensity. Atmosphere, 14(6), 985. https://doi.org/10.3390/atmos14060985

Lanza, L. G., Merlone, A., Cauteruccio, A., Chinchella, E., Stagnaro, M., Dobre, M., Garcia Izquierdo, M. C., Nielsen, J., Kjeldsen, H., Roulet, Y. A., Coppa, G., Musacchio, C., Bordianu, C., & Parrondo, M. (2021). Calibration of non‐catching precipitation measurement instruments: A review. Meteorological Applications, 28(3), e2002. https://doi.org/10.1002/met.2002

Lau, S. K., Ribeiro, F. A., Subbiah, J., & Calkins, C. R. (2019). Agenator: An open source computer-controlled dry aging system for beef. HardwareX, 6, e00086. https://doi.org/10.1016/j.ohx.2019.e00086

Liao, M., Liao, A., Liu, J., Cai, Z., Liu, H., & Ma, T. (2021). A novel method and system for the fast calibration of tipping bucket rain gauges. Journal of Hydrology, 597, 125782. https://doi.org/10.1016/j.jhydrol.2020.125782

Mardyansyah, R. Y., Kurniawan, B., Soekirno, S., Nuryanto, D. E., & Satria, H. (2022). Artificial Intelligent For Rainfall Estimation In Tropical Region: A Survey. IOP Conference Series: Earth and Environmental Science, 1105(1), 012024. https://doi.org/10.1088/1755-1315/1105/1/012024

Masinde, M., & Bagula, A. (2015). A Calibration Report for Wireless Sensor-Based Weatherboards. Journal of Sensor and Actuator Networks, 4(1), 30–49. https://doi.org/10.3390/jsan4010030

Muflih, G. Z., Sunardi, S., & Yudhana, A. (2019). Jaringan Saraf Tiruan Backpropagation untuk Prediksi Curah Hujan di Wilayah Kabupaten Wonosobo. MUST: Journal of Mathematics Education, Science and Technology, 4(1), 45. https://doi.org/10.30651/must.v4i1.2670

Muñoz, P., Célleri, R., & Feyen, J. (2016). Effect of the Resolution of Tipping-Bucket Rain Gauge and Calculation Method on Rainfall Intensities in an Andean Mountain Gradient. Water, 8(11), 534. https://doi.org/10.3390/w8110534

Nikahd, A., Hashim, M., & Nazemosadat, M. J. (2016). An improved algorithm in unipolar weather radar calibration for rainfall estimation. Innovative Infrastructure Solutions, 1(1), 9. https://doi.org/10.1007/s41062-016-0006-y

Pratomo, A. B., & Perdana, R. S. (2017). Arduviz, a visual programming IDE for arduino. 2017 International Conference on Data and Software Engineering (ICoDSE), 1–6. https://doi.org/10.1109/ICODSE.2017.8285871

Purba, N. P., Faizal, I., Martasuganda, M. K., Wulandari, A., Kusuma, Rd. S. D., Ilmi, M. H., Febriani, C., Alfarez, R. R., Argeta, F., & Wicaksana, J. S. (2023). NOBEL-BOX: Development of a Low-Cost Ship-Based Instrument for Ocean Monitoring. Sensors, 23(24), 9654. https://doi.org/10.3390/s23249654

Putri, I. H. S. (2021). A Preliminary Study of Land Use Change and Hydro-meteorological Disaster in The North Coast of Central Java. IOP Conference Series: Earth and Environmental Science, 750(1), 012035. https://doi.org/10.1088/1755-1315/750/1/012035

Quartly, G. D., Chen, G., Nencioli, F., Morrow, R., & Picot, N. (2021). An Overview of Requirements, Procedures and Current Advances in the Calibration/Validation of Radar Altimeters. Remote Sensing, 13(1), 125. https://doi.org/10.3390/rs13010125

Ramadhan, R., Yusnaini, H., Marzuki, M., Muharsyah, R., Suryanto, W., Sholihun, S., Vonnisa, M., Harmadi, H., Ningsih, A. P., Battaglia, A., Hashiguchi, H., & Tokay, A. (2022). Evaluation of GPM IMERG Performance Using Gauge Data over Indonesian Maritime Continent at Different Time Scales. Remote Sensing, 14(5), 1172. https://doi.org/10.3390/rs14051172

Rapeaux, A., & Constandinou, T. G. (2020). An HFAC block-capable and module-extendable 4-channel stimulator for acute neurophysiology. Journal of Neural Engineering, 17(4), 046013. https://doi.org/10.1088/1741-2552/ab947a

Reynolds, J. E., Halldin, S., Xu, C. Y., Seibert, J., & Kauffeldt, A. (2017). Sub-daily runoff predictions using parameters calibrated on the basis of data with a daily temporal resolution. Journal of Hydrology, 550, 399–411. https://doi.org/10.1016/j.jhydrol.2017.05.012

Samijayani, O. N., Iftikar, F., Hariomurti, M., & Astharini, D. (2014). Implementasi Sistem Sensor Sederhana untuk Peringatan Banjir melalui SMS. Jurnal Al-Azhar Indonesia Seri Sains dan Teknologi, 2(1), 22. https://doi.org/10.36722/sst.v2i1.94

Santana, M. A. A., Guimarães, P. L. O., & Lanza, L. G. (2018). Development of procedures for calibration of meteorological sensors. Case study: Calibration of a tipping-bucket rain gauge and data-logger set. Journal of Physics: Conference Series, 975, 012006. https://doi.org/10.1088/1742-6596/975/1/012006

Segovia-Cardozo, D. A., Bernal-Basurco, C., & Rodríguez-Sinobas, L. (2023). Tipping Bucket Rain Gauges in Hydrological Research: Summary on Measurement Uncertainties, Calibration, and Error Reduction Strategies. Sensors, 23(12), 5385. https://doi.org/10.3390/s23125385

Segovia-Cardozo, D. A., Rodríguez-Sinobas, L., Díez-Herrero, A., Zubelzu, S., & Canales-Ide, F. (2021). Understanding the Mechanical Biases of Tipping-Bucket Rain Gauges: A Semi-Analytical Calibration Approach. Water, 13(16), 2285. https://doi.org/10.3390/w13162285

Shedekar, V. S., King, K. W., Fausey, N. R., Soboyejo, A. B. O., Harmel, R. D., & Brown, L. C. (2016). Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges. Atmospheric Research, 178–179, 445–458. https://doi.org/10.1016/j.atmosres.2016.04.016

Sypka, P. (2019). Dynamic real-time volumetric correction for tipping-bucket rain gauges. Agricultural and Forest Meteorology, 271, 158–167. https://doi.org/10.1016/j.agrformet.2019.02.044

Tuncay, V., Zijlstra, J., Oudkerk, M., & Van Ooijen, P. M. A. (2020). Design, Implementation, and Validation of a Pulsatile Heart Phantom Pump. Journal of Digital Imaging, 33(5), 1301–1305. https://doi.org/10.1007/s10278-020-00375-5

Wang, S.-W., Chen, C.-C., Wu, C.-M., & Huang, C.-M. (2018). A continuous water-level sensor based on load cell and floating pipe. 2018 IEEE International Conference on Applied System Invention (ICASI), 151–154. https://doi.org/10.1109/ICASI.2018.8394554

Wijonarko, S., Maftukhah, T., Rustandi, D., Sirenden, B., & Darmayanti, N. T. (2019). Web Based Rain Gauge Calibrator. Instrumentasi, 43(1), 25. https://doi.org/10.31153/instrumentasi.v43i1.176

Wijonarko, S., Maftukhah, T., Rustandi, D., Sirenden, B., & Mahmudi, M. (2020). The Second Generation of Web Based Rain Gauge Calibrator. Instrumentasi, 44(2), 113. https://doi.org/10.31153/instrumentasi.v44i2.218

Yang, Q., Wang, Q. J., & Hakala, K. (2021). Achieving effective calibration of precipitation forecasts over a continental scale. Journal of Hydrology: Regional Studies, 35, 100818. https://doi.org/10.1016/j.ejrh.2021.100818

Author Biographies

Dani Zulfia Rohmah, Universitas Negeri Makassar

Jasruddin, Universitas Negeri Makassar

Subaer, Universitas Negeri Makassar

Bagus Satrio Utomo, Badan Meteorologi Klimatologi dan Geofisika

License

Copyright (c) 2024 Dani Zulfia Rohmah, Jasruddin, Subaer, Bagus Satrio Utomo

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).