The Population and Isolates of Potential ACC Deaminase-Producing Rhizobacteria from Rhizospheric Soil of Peanut under Different Moisture Level
DOI:
10.29303/jppipa.v10i11.7818Published:
2024-11-25Downloads
Abstract
ACC deaminase-producing rhizobacteria play an important role in enhancing plant growth and health, particularly under environmental stress condition. This study focused on isolating and determining the population of potential ACC deaminase-producing rhizobacteria from the rhizosphere of peanut plants (Arachis hypogea L.) grown under varying moisture level. Bacterial population was measured using the Standard Plate Count (SPC) method on Dworkin-Foster (DF) medium supplemented with 3 mM.L-1 ACC as the sole nitrogen source. The isolated bacteria were screened based on their ability to grow after 24 hours of incubation on the selective medium. Result showed that bacterial colonies on nutrient agar (NA) medium varied in color, while colonies on the selective medium were uniformly white. The total population of ACC deaminase-producing rhizobacteria generally declined as soil moisture decreased, nevertheless, the sample at 80% available water contained fewer bacteria (7.3 x 103 cfu.g-1 soil) than those (9.7 x 105 cfu.g-1) at 50%. In an additional experiment, 9 out of 11 selected isolates were found to potentially produce ACC deaminase, with 5 of these being diazotrophic bacteria. This study contributes valuable information for designing irrigation systems in sustainable land management, particularly concerning plant-beneficial microbes that produce ACC deaminase and help plants tolerate environmental stressors.
Keywords:
ACC deaminase Peanut plant Rhizobacterial population Soil available waterReferences
Achadiyah, S. (2017). Sifat Umum Hasil Pertanian. Yogyakarta: Instiper Yogyakarta.
Alexander, M. (1991). Introduction to soil microbiology (2nd ed.). Krieger Publishing Company.
Arifin, Z., Gunam, I. B. W., Antara, N. S., & Setiyo, Y. (2019). Isolasi bakteri selulolitik pendegradasi selulosa dari kompos. Jurnal Rekayasa Dan Manajemen Agroindustri ISSN, 2503, 488. https://doi.org/10.24843/JRMA.2019.v07.i01.p04
Ariyani, M. D., Dewi, T. K., Pujiyanto, S., & Suprihadi, A. (2021). Isolasi dan karakterisasi plant growth promoting rhizobacteria dari perakaran kelapa sawit pada lahan gambut. Bioma: Berkala Ilmiah Biologi, 23(2), 159–171. https://doi.org/10.14710/bioma.23.2.159-171
Armada, E., Leite, M. F. A., Medina, A., Azcón, R., & Kuramae, E. E. (2018). Native bacteria promote plant growth under drought stress condition without impacting the rhizomicrobiome. FEMS Microbiol. Ecol, 94, 1–13. https://doi.org/10.1093/femsec/fiy092
Asiah, N., & Djaeni, M. (2021). Konsep dasar proses pengeringan pangan. Malang: AE Publishing.
Astuti, L. A., Muslichah, D. A., Suprihadi, A., Rukmi, M. I., Mulyani, N., & Sutisna, E. (2021). Karakterisasi bakteri diazotrof dan pengaruhnya terhadap pertumbuhan tanaman kedelai (Glycine max L. Merrill). NICHE Journal of Tropical Biology, 4(1), 40–49. https://doi.org/10.14710/niche.4.1.40-49
Bal, H. B., Nayak, L., Das, S. H., & Adhya, T. K. (2013). Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil, 366, 93–105. https://doi.org/10.1007/s11104-012-1402-5
Bogati, K., & Walczak, M. (2022). The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants. Agronomy, 12(1), 189. https://doi.org/10.3390/agronomy12010189
Borowik, A., & Wyszkowska, J. (2016). Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil Environ, 62(6), 250–255. https://doi.org/10.17221/158/2016-PSE
Brahmaprakash, G. P., Sahu, P. K., Lavanya, G., Nair, S. S., Gangaraddi, V. K., & Gupta, A. (2017). Microbial Functions of the Rhizosphere. In D. Singh, H. Singh, & R. Prabha (Eds.), Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer. https://doi.org/10.1007/978-981-10-5813-4_10
Carvalho, T. L. G., Balsemão-Pires, E., Saraiva, R. M., Ferreira, P. C. G., & Hemerly, A. S. (2014). Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. Journal of Experimental Botany, 65(19), 5631–5642. https://doi.org/10.1093/jxb/eru319
Fitriasari, P. D., Amalia, N., & Farkhiyah, S. (2020). Isolasi dan uji kompatibilitas bakteri hidrolitik dari tanah tempat pemrosesan akhir Talangagung, Kabupaten Malang. Berita Biologi, 19(1), 151–156. https://doi.org/10.14203/beritabiologi.v19i2.3828
Glick, B. R. (2014). Bacteria ith ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res, 169(1), 30–39. https://doi.org/10.1016/j.micres.2013.09.009
Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-containing soil bacteria. Eur. J. Plant Pathol, 119, 329–339. https://doi.org/10.1007/s10658-007-9162-4
Gupta, A., Rai, S., Bano, A., Sharma, S., Kumar, M., Binsuwaidan, R., & Pathak, N. (2022). ACC Deaminase Produced by Mitigates the Adverse Effect of Osmotic and Salinity Stresses in Pisum sativum through Modulating the Antioxidants Activities. Plants, 11, 1–23. https://doi.org/10.3390/plants11243419
Haque, M. M., Mosharaf, M. K., Khatun, M., Haque, M. A., Biswas, M. S., Islam, M. S., Islam, M. M., Shozib, H. B., Miah, M. M. U., Molla, A. H., & Siddiquee, M. A. (2020). Biofilm Producing Rhizobacteria With Multiple Plant Growth-Promoting Traits Promote Growth of Tomato Under Water-Deficit Stress. Front. Microbiol, 11, 542053. https://doi.org/10.3389/fmicb.2020.542053
Hayati, R., A., A., M.K., A., & S.T, S. (2005). Analisis Kadar Air dan Aktivitas Air Kritikal Produk Sata dari Malaysia dan Implikasinya pada Sifat-sifat Produk dan Umur Simpannya. Jurnal Teknologi Dan Industri Pangan, 16(5), 191–198. Retrieved from https://journal.ipb.ac.id/index.php/jtip/article/view/500
Honma, M., & Shimomura, T. (1978). Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric. Biol. Chem, 42(10), 1825–31. https://doi.org/10.1271/bbb1961.42.182
Husen, E., Salma, S., Husnain, & Sutardi. (2021). Growth and yield improvement of maize by ACC deaminase producing bacteria under dry soil conditions. IOP Conf. Ser.: Earth Environ. Sci, 648, 12135. https://doi.org/10.1088/1755-1315/648/1/012135
Imran, A., Hakim, S., Tariq, M., Nawaz, M. S., Laraib, I., Gulzar, U., Hanif, M. K., Siddique, M. J., Hayat, M., Fraz, A., & Ahmad, M. (2021). Diazotrophs for lowering nitrogen pollution crises: looking deep into the roots. Frontiers in Microbiology, 12, 1–18, 637815. https://doi.org/10.3389/fmicb.2021.637815
Jaya, D. K., Giyanto, G., Nurhidayat, N., & Antonius, S. (2019). Isolation, identification, and detection of ACC deaminase gene-encoding rhizobacteria from rhizosphere of stressed pineapple. Indonesian Journal of Biotechnology, 24(1), 17–25. https://doi.org/10.22146/ijbiotech.39018
Karimi, E., Aliasgharzad, N., Esfandiari, E., Hassanpouraghdam, B., Neu, T. R., Buscot, F., Reitz, T., Breitkreuz, C., & Tarkka, M. T. (2022). Biofilm forming rhizobacteria affect the physiological and biochemical responses of wheat to drought. AMB Express, 12(1), 93. https://doi.org/10.1186/s13568-022-01432-8
Karthikeyan, B., Joe, M. M., Islam, M. R., & Sa, T. (2012). ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis, 56(2), 77–86. https://doi.org/10.1007/s13199-012-0162-6
Kruasuwan, W., & Thamchaipenet, A. (2018). 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic diazotrophic Enterobacter sp. EN-21 modulates salt–stress response in sugarcane. Journal of Plant Growth Regulation, 37, 849–858. https://doi.org/10.1007/s00344-018-9780-4
Kusumastuti, A. (2013). Aktivitas mikroba tanah, pertumbuhan dan rendemen nilam (Pogostemon cablin Benth.) pada berbagai aras bahan organik serta lengas tanah di Ultisols. Jurnal Penelitian Pertanian Terapan, 13(2), 78–84. https://doi.org/10.25181/jppt.v13i2.170
Leizeaga, A., Hick, L. C., Manoharan, L., Hawkes, C. V, & Rousk, J. (2020). Drought legacy affects microbial community trait distributions related to moisture along a savanna-grassland precipitation gradient. J. Ecol, 109(9), 3195–3210. https://doi.org/10.1111/1365-2745.13550
Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistanceto water stress in tomato and pepper. Plant Sci, 166(2), 525–30. https://doi.org/10.1016/j.plantsci.2003.10.025
Menti, Y., Yusnaini, S., Buchari, H., & Niswati, A. (2020). Respirasi Tanah Akibat Sistem Olah Tanah dan Aplikasi Mulsa In Situ pada Pertanaman Kacang Hijau (Vigna radiata L.) di Laboratorium Lapang Terpadu, Universitas Lampung. Jurnal Agrotek Tropika, 8(2), 365–373. https://doi.org/10.23960/jat.v8i2.3911
Mir, M. I., Hameeda, B., Quadriya, H., Kumar, B. K., Ilyas, N., Zuan, A. T. K., El Enshasy, H. A., Dailin, D. J., Kassem, H. S., Gafur, A., & Sayyed, R. Z. (2022). Multifarious indigenous diazotrophic rhizobacteria of rice (Oryza sativa L.) rhizosphere and their effect on plant growth promotion. Frontiers in Nutrition, 8, 781764. https://doi.org/10.3389/fnut.2021.781764
Nadeem, S. M., Shaharoona, B., Arshad, M., & Crowley, D. E. (2012). Populaiton density and functional diversity of plant growth promoting rhizobacteria associated with avocado in saline soils. Applied Soil Ecology, 62, 147–154. https://doi.org/10.1016/j.apsoil.2012.08.005
Nugroho, A. A., Agustiyani, D., Sutisna, E., Mulyani, N., Dewi, T. K., Nditasari, A., Antonius, S., & Purwaningsih, S. (2023). Potensi Rhizobakteri Dalam Mendukung Pertumbuhan Stek Batang Singkong (Manihot esculenta Crantz. Berita Biologi, 22(3), 247–260. https://doi.org/10.55981/beritabiologi.2023.120
Ong, J. D. P., Lantican, N. B., Cruz, W. T., Diaz, M. G. Q., & Paterno, E. S. (2018). Characterization of plant growth-promoting diazotrophs from salt-affected areas in the Philippines. Philip. J. Crop Sci, 43(1), 56–68. Retrieved from https://www.researchgate.net/publication/327552715_Characterization_of_Plant_Growth-Promoting_Diazotrophs_from_Salt-Affected_Areas_in_the_Philippines
Orozco-Mosqueda, M., Glick, B. R., & Santoyo, G. (2020). ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research, 235, 126439. https://doi.org/10.1016/j.micres.2020.126439
Oyewole, A. O., & Asiotu, N. (2012). Rhizosphere microbial communities: A review. RRBS, 6(10), 271–279. Retrieved from https://www.tsijournals.com/articles/rhizosphere-microbial-communities-a-review.pdf
Panggabean, N., Sabrina, T., & Lubis, K. S. (2016). Populasi Bakteri Tanah pada Piringan Tanaman Kelapa Sawit Akibat Pemberian Pupuk NPK Komplit: Population of Soil Bacterial in The Oil Palm’s Weeded Circle Applied with NPK Complete Fertilizer. Jurnal Online Agroekoteknologi, 4(3), 2069–2077. https://doi.org/10.32734/joa.v4i3.2140
Permana, A. H., Yuliana, E., & Nurhalisa, I. A. (2021). Isolasi dan Karakterisasi Morfologi Mikroorganisme pada Proses Fermentasi Kombucha Berbahan Baku Teh Hijau (Camellia sinensis. Warta Akab, 45(2), 60–65. https://doi.org/10.55075/wa.v45i2.38
Qur’ana, Z. (2018). Pengaruh Penggunaan Lahan Dan Umur Tanaman Terhadap Respirasi Tanah Di Ub Forest, Karangploso Kabupaten Malang [Doctoral dissertation: Universitas Brawijaya]. https://repository.ub.ac.id/id/eprint/12846/
Rahman, A. N. S. N., Hamid, A. N. W., & Nadarajah, K. (2021). Effects of Abiotic Stress on Soil Microbiome. mInt. J. Mol. Sci, 22(16), 9036. https://doi.org/10.3390/ijms22169036
Ratnaningsih, H. R., Noviana, Z., Dewi, T. K., Loekito, S., Wiyono, S., Gafur, A., & Antonius, S. (2023). IAA and ACC deaminase producing-bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon, 9(6), 1–13. https://doi.org/10.1016/j.heliyon.2023.e16306
Ristiati, N. P., Suryanti, I., & Indrawan, I. (2018). Isolasi dan karakterisasi bakteri tanah pada tempat pemrosesan akhir di Desa Bengkala Kabupaten Buleleng. Wahana Matematika Dan Sains, Jurnal Matematika, Sains Dan Pembelajarannya, 12(1), 64–77. Retrieved from https://ejournal.undiksha.ac.id/index.php/JPM/article/view/pril2018-6
Sopiah, N., & Arifudin, A. (2016). Uji Coba Kinerja Bakteri Karbonoklastik Pada Tanah Tercemar Minyak Bumi Dengan Teknik Landfarming. Jurnal Teknologi Lingkungan BPPT, 13(2), 131–140. https://doi.org/10.29122/jtl.v13i2.1412
Suryani, Y., & Taupiqurrahman. (2021). Mikrobiologi Dasar. In LP2M UIN SGD Bandung. Retrieved from https://digilib.uinsgd.ac.id/40171/
Syah, M. F. (2021). Keanekaragaman dan potensi bakteri lahan rawa pasang surut Kalimantan Selatan dan lahan Rawa lebak Sumatra Selatan [Bachelor’s thesis: Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta]. Retrieved from https://repository.uinjkt.ac.id/dspace/handle/123456789/56896
Thiebaut, F., Urquiaga, M. C. D. O., Rosman, A. C., Silva, M. L., & Hemerly, A. S. (2022). The impact of non-nodulating diazotrophic bacteria in agriculture: understanding the molecular mechanisms that benefit crops. International Journal of Molecular Sciences, 23(19), 11301. https://doi.org/10.3390/ijms231911301
Timmusk, S., Paalme, V., Pavlicek, T., Bergquist, J., Vangala, A., & Danilas, T. (2011). Bacterial Distribution in the rhizosphere of wild barley under contrasting microclimates. PloS ONE, 6(3), 17968. https://doi.org/10.1371/journal.pone.0017968
Triyani, U., & Hafsan. (2021). Mengungkap Misteri Interaksi Antara Mikroba dan Tanah. Makassar: Alauddin University Press.
Tromberger, M. E., Abduelafez, I., Byrne, P., Canela, M. M., Elamari, A., Manter, K. D., & Weir, D. (2017). Genotype-Specific Enrichment of 1-Aminocyclopropane-1- Carboxylic Acid Deaminase-Positive Bacteria in Winter Wheat Rhizospheres. Soil Science Society of America Journal, 81(4), 796–805. https://doi.org/10.2136/sssaj2016.12.0437
Xu, L., Naylor, D., Dong, Z., Simmons, T., Pierroz, G., & Hixson, K. K. (2018). Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. U. S. A, 115(18), 4284– 4293. https://doi.org/10.1073/pnas.1717308115
License
Copyright (c) 2024 Dori Kusuma Jaya, Lolita Endang Susilowati, Zaenal Arifin, Age Iwandaka, Eli Martini

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






