Support Vector Machine for Classification: A Mathematical and Scientific Approach in Data Analysis
DOI:
10.29303/jppipa.v10i11.8122Published:
2024-11-25Downloads
Abstract
In this research, SVM will be used to differentiate between plain nail art designs (class 0), 3D nail art designs (class 1), and hand painting nail art designs (class 2). The dataset used consists of images of nail designs that have been collected and analyzed previously. First, the dataset is divided into three different classes based on the type of nail design. The first class (class 0) includes plain nail art designs, then the second class (class 1) is 3D nail art designs, and the third class (class 2) is hand painting nail art designs. This process is carried out to allow SVM to learn the feature differences between the two types of designs. The data used will be divided into training and testing data and divided into three data division schemes, namely 60/40, 70/30, and 80/20. Based on the results of the research discussed, it can be concluded that classification using the Linear SVM model on three data sharing schemes provides the best level of accuracy on the 80/20 scheme, namely 81.25%. Meanwhile, classification using the non-linear SVM model achieved the highest level of accuracy of 95% in the 80/20 scheme with the RBF Kernel. Thus, the SVM model that is suitable for classifying nail art designs is a non-linear SVM model with the 80/20 scheme. The accuracy results obtained from this research also show that SVM provides good performance in classifying nail art designs.
Keywords:
Classification Kernel Support vector machineReferences
Abbas, S. A. (2018). Entrepreneurship and information technology businesses in economic crisis. Entrepreneurship and Sustainability Issues, 5(3). https://doi.org/10.9770/jesi.2018.5.3(20)
Agarwal, S. (2014). Data mining: Data mining concepts and techniques. In Proceedings - 2013 International Conference on Machine Intelligence Research and Advancement, ICMIRA 2013. https://doi.org/10.1109/ICMIRA.2013.45
Ardani, J. A., Utomo, C., & Rahmawati, Y. (2021). Model ownership and intellectual property rights for collaborative sustainability on building information modeling. Buildings, 11(8). https://doi.org/10.3390/buildings11080346
Atik, C., Kut, R. A., Yilmaz, R., & Birant, D. (2023). Support Vector Machine Chains with a Novel Tournament Voting. Electronics (Switzerland), 12(11). https://doi.org/10.3390/electronics12112485
Avci, C., Budak, M., Yagmur, N., & Balcik, F. B. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1). https://doi.org/10.26833/ijeg.987605
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2). https://doi.org/10.1023/A:1009715923555
Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3). https://doi.org/10.1145/1961189.1961199
Charleonnan, A., Fufaung, T., Niyomwong, T., Chokchueypattanakit, W., Suwannawach, S., & Ninchawee, N. (2017). Predictive analytics for chronic kidney disease using machine learning techniques. 2016 Management and Innovation Technology International Conference, MITiCON 2016, MIT80–MIT83. https://doi.org/10.1109/MITICON.2016.8025242
Deng, N., Tian, Y., & Zhang, C. (2012). Support vector machines: optimization based theory, algorithms, and extensions. CRC press.
Divayana, D. G. H., Suyasa, P. W. A., & Widiartini, N. K. (2021). An innovative model as evaluation model for information technology-based learning at ICT vocational schools. Heliyon, 7(2). https://doi.org/10.1016/j.heliyon.2021.e06347
Elshewey, A. M., Shams, M. Y., El-Rashidy, N., Elhady, A. M., Shohieb, S. M., & Tarek, Z. (2023). Bayesian Optimization with Support Vector Machine Model for Parkinson Disease Classification. Sensors, 23(4). https://doi.org/10.3390/s23042085
Feta, N. R., & Ginanjar, A. R. (2019). Komparasi fungsi kernel metode support vector machine untuk pemodelan klasifikasi terhadap penyakit tanaman kedelai. BRITech, Jurnal Ilmiah Ilmu Komputer, Sains dan Teknologi Terapan, 1(1), 33-39. Retrieved from https://shorturl.at/P6uJ2
Gandhi, R. (2018). Support Vector Machine — Introduction to Machine Learning Algorithms. Towards Data Science, 7(06). Retrieved from https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
Jain, A., Ahirwar, M., & Pandey, R. (2019). A Review on Intutive Prediction Of Heart Disease Using Data Mining Techniques. International Journal of Computer Sciences and Engineering, 7(7), 109–113. https://doi.org/10.26438/ijcse/v7i7.109113
Jana, D. K., Bhunia, P., Adhikary, S. Das, & Mishra, A. (2023). Analyzing of salient features and classification of wine type based on quality through various neural network and support vector machine classifiers. Results in Control and Optimization, 11. https://doi.org/10.1016/j.rico.2023.100219
Jeong, S.-E., & Kim, J.-M. (2015). A study on check pattern of nail art. Journal of the Korea Fashion and Costume Design Association, 17(1), 53–68. Retrieved from https://koreascience.kr/article/JAKO201509957115064.page
Kim, J., & Jeong, S. (2014). A Study on Expression Techniques of Nail Art: Focused on Nail Holic in 2012. Fashion Business, 18(6), 100–115. https://doi.org/10.12940/jfb.2014.18.6.100
Krisnawati, M., Cahyono, A., Syarif, I., Naam, F., & Ariyanti, E. E. (2022). Nail Art : Sejarah, Bentuk, Warna dan Teknik Pembuatannya. Prosiding Seminar Naisional Pasca Sarjana, 641–645. Retrieved from https://proceeding.unnes.ac.id/snpasca/article/view/1543
Nayak, J., Naik, B., & Behera, H. S. (2015). A Comprehensive Survey on Support Vector Machine in Data Mining Tasks: Applications & Challenges. International Journal of Database Theory and Application, 8(1), 169–186. https://doi.org/10.14257/ijdta.2015.8.1.18
Niu, C., Lv, M., Chen, K., & Wang, G. (2024). Optimization of Urban Mass Transit System Based on Support Vector Machine and Ant Colony Algorithm. Computer-Aided Design and Applications, 21(S3). https://doi.org/10.14733/cadaps.2024.S3.242-257
Octaviani, P. A., Wilandari, Y., & Ispriyanti, D. (2014). Penerapan Metode Klasifikasi Support Vector Machine (SVM) pada Data Akreditasi Sekolah Dasar (SD) di Kabupaten Magelang. Jurnal Gaussian, 3(4), 811-820. https://doi.org/10.14710/j.gauss.3.4.811-820
Puspitasari, A. M., Ratnawati, D. E., & Widodo, A. W. (2018). Klasifikasi penyakit gigi dan mulut menggunakan metode Support Vector Machine. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(2), 802-810. Retrieved from https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/967
Ritonga, A. S., & Purwaningsih, E. S. (2018). Penerapan Metode Support Vector Machine (SVM) Dalam Klasifikasi Kualitas Pengelasan Smaw (Shield Metal Arc Welding). Ilmiah Edutic, 5(1), 17–25. https://doi.org/10.21107/edutic.v5i1.4382
Rizal, R. A., Girsang, I. S., & Prasetiyo, S. A. (2019). Klasifikasi Wajah Menggunakan Support Vector Machine (SVM). REMIK (Riset Dan E-Jurnal Manajemen Informatika Komputer), 3(2), 1. https://doi.org/10.33395/remik.v3i2.10080
Saputra, R. A., Puspitasari, D., & Baidawi, T. (2022). Deteksi Kematangan Buah Melon Dengan Algoritma Support Vector Machine Berbasis Ekstraksi Fitur GLCM. Jurnal Infortech, 4(2), 200–206. https://doi.org/10.31294/infortech.v4i2.14436
Sari, E. A., Saragih, M. T. B., Shariati, I. A., Sofyan, S., Al Baihaqi, R., & Nooraeni, R. (2020). Klasifikasi Kabupaten Tertinggal di Kawasan Timur Indonesia dengan Support Vector Machine. JIKO (Jurnal Informatika Dan Komputer), 3(3), 188–195. https://doi.org/10.33387/jiko.v3i3.2364
Somantri, O., Wiyono, S., & Dairoh, D. (2016). Metode K-Means untuk Optimasi Klasifikasi Tema Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (SVM). Scientific Journal of Informatics, 3(1), 34–45. https://doi.org/10.15294/sji.v3i1.5845
Wibawa, A. P., Guntur, M., Purnama, A., Akbar, M. F., & Dwiyanto, F. A. (2018). Metode-metode klasifikasi. In Prosiding Seminar Ilmu Komputer dan Teknologi Informasi (Vol. 3, No. 1). Retrieved from https://core.ac.uk/download/pdf/268075072.pdf
Yao, Y., Liu, Y., Yu, Y., Xu, H., Lv, W., Li, Z., & Chen, X. (2013). K-SVM: An effective SVM algorithm based on K-means clustering. Journal of Computers (Finland), 8(10), 2632–2639. https://doi.org/10.4304/jcp.8.10.2632-2639
License
Copyright (c) 2024 Yulia Restiani, Joko Purwadi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






