Vol. 10 No. 11 (2024): November
Open Access
Peer Reviewed

Support Vector Machine for Classification: A Mathematical and Scientific Approach in Data Analysis

Authors

DOI:

10.29303/jppipa.v10i11.8122

Published:

2024-11-25

Downloads

Abstract

In this research, SVM will be used to differentiate between plain nail art designs (class 0), 3D nail art designs (class 1), and hand painting nail art designs (class 2). The dataset used consists of images of nail designs that have been collected and analyzed previously. First, the dataset is divided into three different classes based on the type of nail design. The first class (class 0) includes plain nail art designs, then the second class (class 1) is 3D nail art designs, and the third class (class 2) is hand painting nail art designs. This process is carried out to allow SVM to learn the feature differences between the two types of designs. The data used will be divided into training and testing data and divided into three data division schemes, namely 60/40, 70/30, and 80/20. Based on the results of the research discussed, it can be concluded that classification using the Linear SVM model on three data sharing schemes provides the best level of accuracy on the 80/20 scheme, namely 81.25%. Meanwhile, classification using the non-linear SVM model achieved the highest level of accuracy of 95% in the 80/20 scheme with the RBF Kernel. Thus, the SVM model that is suitable for classifying nail art designs is a non-linear SVM model with the 80/20 scheme. The accuracy results obtained from this research also show that SVM provides good performance in classifying nail art designs.

Keywords:

Classification Kernel Support vector machine

References

Abbas, S. A. (2018). Entrepreneurship and information technology businesses in economic crisis. Entrepreneurship and Sustainability Issues, 5(3). https://doi.org/10.9770/jesi.2018.5.3(20)

Agarwal, S. (2014). Data mining: Data mining concepts and techniques. In Proceedings - 2013 International Conference on Machine Intelligence Research and Advancement, ICMIRA 2013. https://doi.org/10.1109/ICMIRA.2013.45

Ardani, J. A., Utomo, C., & Rahmawati, Y. (2021). Model ownership and intellectual property rights for collaborative sustainability on building information modeling. Buildings, 11(8). https://doi.org/10.3390/buildings11080346

Atik, C., Kut, R. A., Yilmaz, R., & Birant, D. (2023). Support Vector Machine Chains with a Novel Tournament Voting. Electronics (Switzerland), 12(11). https://doi.org/10.3390/electronics12112485

Avci, C., Budak, M., Yagmur, N., & Balcik, F. B. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1). https://doi.org/10.26833/ijeg.987605

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2). https://doi.org/10.1023/A:1009715923555

Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3). https://doi.org/10.1145/1961189.1961199

Charleonnan, A., Fufaung, T., Niyomwong, T., Chokchueypattanakit, W., Suwannawach, S., & Ninchawee, N. (2017). Predictive analytics for chronic kidney disease using machine learning techniques. 2016 Management and Innovation Technology International Conference, MITiCON 2016, MIT80–MIT83. https://doi.org/10.1109/MITICON.2016.8025242

Deng, N., Tian, Y., & Zhang, C. (2012). Support vector machines: optimization based theory, algorithms, and extensions. CRC press.

Divayana, D. G. H., Suyasa, P. W. A., & Widiartini, N. K. (2021). An innovative model as evaluation model for information technology-based learning at ICT vocational schools. Heliyon, 7(2). https://doi.org/10.1016/j.heliyon.2021.e06347

Elshewey, A. M., Shams, M. Y., El-Rashidy, N., Elhady, A. M., Shohieb, S. M., & Tarek, Z. (2023). Bayesian Optimization with Support Vector Machine Model for Parkinson Disease Classification. Sensors, 23(4). https://doi.org/10.3390/s23042085

Feta, N. R., & Ginanjar, A. R. (2019). Komparasi fungsi kernel metode support vector machine untuk pemodelan klasifikasi terhadap penyakit tanaman kedelai. BRITech, Jurnal Ilmiah Ilmu Komputer, Sains dan Teknologi Terapan, 1(1), 33-39. Retrieved from https://shorturl.at/P6uJ2

Gandhi, R. (2018). Support Vector Machine — Introduction to Machine Learning Algorithms. Towards Data Science, 7(06). Retrieved from https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

Jain, A., Ahirwar, M., & Pandey, R. (2019). A Review on Intutive Prediction Of Heart Disease Using Data Mining Techniques. International Journal of Computer Sciences and Engineering, 7(7), 109–113. https://doi.org/10.26438/ijcse/v7i7.109113

Jana, D. K., Bhunia, P., Adhikary, S. Das, & Mishra, A. (2023). Analyzing of salient features and classification of wine type based on quality through various neural network and support vector machine classifiers. Results in Control and Optimization, 11. https://doi.org/10.1016/j.rico.2023.100219

Jeong, S.-E., & Kim, J.-M. (2015). A study on check pattern of nail art. Journal of the Korea Fashion and Costume Design Association, 17(1), 53–68. Retrieved from https://koreascience.kr/article/JAKO201509957115064.page

Kim, J., & Jeong, S. (2014). A Study on Expression Techniques of Nail Art: Focused on Nail Holic in 2012. Fashion Business, 18(6), 100–115. https://doi.org/10.12940/jfb.2014.18.6.100

Krisnawati, M., Cahyono, A., Syarif, I., Naam, F., & Ariyanti, E. E. (2022). Nail Art : Sejarah, Bentuk, Warna dan Teknik Pembuatannya. Prosiding Seminar Naisional Pasca Sarjana, 641–645. Retrieved from https://proceeding.unnes.ac.id/snpasca/article/view/1543

Nayak, J., Naik, B., & Behera, H. S. (2015). A Comprehensive Survey on Support Vector Machine in Data Mining Tasks: Applications & Challenges. International Journal of Database Theory and Application, 8(1), 169–186. https://doi.org/10.14257/ijdta.2015.8.1.18

Niu, C., Lv, M., Chen, K., & Wang, G. (2024). Optimization of Urban Mass Transit System Based on Support Vector Machine and Ant Colony Algorithm. Computer-Aided Design and Applications, 21(S3). https://doi.org/10.14733/cadaps.2024.S3.242-257

Octaviani, P. A., Wilandari, Y., & Ispriyanti, D. (2014). Penerapan Metode Klasifikasi Support Vector Machine (SVM) pada Data Akreditasi Sekolah Dasar (SD) di Kabupaten Magelang. Jurnal Gaussian, 3(4), 811-820. https://doi.org/10.14710/j.gauss.3.4.811-820

Puspitasari, A. M., Ratnawati, D. E., & Widodo, A. W. (2018). Klasifikasi penyakit gigi dan mulut menggunakan metode Support Vector Machine. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(2), 802-810. Retrieved from https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/967

Ritonga, A. S., & Purwaningsih, E. S. (2018). Penerapan Metode Support Vector Machine (SVM) Dalam Klasifikasi Kualitas Pengelasan Smaw (Shield Metal Arc Welding). Ilmiah Edutic, 5(1), 17–25. https://doi.org/10.21107/edutic.v5i1.4382

Rizal, R. A., Girsang, I. S., & Prasetiyo, S. A. (2019). Klasifikasi Wajah Menggunakan Support Vector Machine (SVM). REMIK (Riset Dan E-Jurnal Manajemen Informatika Komputer), 3(2), 1. https://doi.org/10.33395/remik.v3i2.10080

Saputra, R. A., Puspitasari, D., & Baidawi, T. (2022). Deteksi Kematangan Buah Melon Dengan Algoritma Support Vector Machine Berbasis Ekstraksi Fitur GLCM. Jurnal Infortech, 4(2), 200–206. https://doi.org/10.31294/infortech.v4i2.14436

Sari, E. A., Saragih, M. T. B., Shariati, I. A., Sofyan, S., Al Baihaqi, R., & Nooraeni, R. (2020). Klasifikasi Kabupaten Tertinggal di Kawasan Timur Indonesia dengan Support Vector Machine. JIKO (Jurnal Informatika Dan Komputer), 3(3), 188–195. https://doi.org/10.33387/jiko.v3i3.2364

Somantri, O., Wiyono, S., & Dairoh, D. (2016). Metode K-Means untuk Optimasi Klasifikasi Tema Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (SVM). Scientific Journal of Informatics, 3(1), 34–45. https://doi.org/10.15294/sji.v3i1.5845

Wibawa, A. P., Guntur, M., Purnama, A., Akbar, M. F., & Dwiyanto, F. A. (2018). Metode-metode klasifikasi. In Prosiding Seminar Ilmu Komputer dan Teknologi Informasi (Vol. 3, No. 1). Retrieved from https://core.ac.uk/download/pdf/268075072.pdf

Yao, Y., Liu, Y., Yu, Y., Xu, H., Lv, W., Li, Z., & Chen, X. (2013). K-SVM: An effective SVM algorithm based on K-means clustering. Journal of Computers (Finland), 8(10), 2632–2639. https://doi.org/10.4304/jcp.8.10.2632-2639

Author Biographies

Yulia Restiani, Universitas Ahmad Dahlan

Author Origin : Indonesia

Joko Purwadi, Universitas Ahmad Dahlan

Author Origin : Indonesia

Department of Mathematics, Faculty of applied science and technology, Ahmad Dahlan University

Downloads

Download data is not yet available.

How to Cite

Restiani, Y., & Purwadi, J. (2024). Support Vector Machine for Classification: A Mathematical and Scientific Approach in Data Analysis. Jurnal Penelitian Pendidikan IPA, 10(11), 9896–9903. https://doi.org/10.29303/jppipa.v10i11.8122