Communication Satellite-Based Rainfall Estimation for Flood Mitigation in Papua

Authors

Raden Yudha Mardyansyah , Budhy Kurniawan , Santoso Soekirno , Danang Eko Nuryanto

DOI:

10.29303/jppipa.v10i12.8409

Published:

2024-12-31

Issue:

Vol. 10 No. 12 (2024): December

Keywords:

Deep learning, One-dimensional convolution neural network, Rainfall prediction

Research Articles

Downloads

How to Cite

Mardyansyah, R. Y., Kurniawan, B., Soekirno, S., & Nuryanto, D. E. (2024). Communication Satellite-Based Rainfall Estimation for Flood Mitigation in Papua. Jurnal Penelitian Pendidikan IPA, 10(12), 11326–11335. https://doi.org/10.29303/jppipa.v10i12.8409

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Papua, an equatorial region in Indonesia, faces unique geographical and natural challenges, including heavy annual rainfall. This heavy rainfall increases flooding risks and impacts infrastructure, the economy, and daily life. Despite the importance of rain gauges for monitoring floods and climate change, Papua's difficult geography and limited transportation infrastructure hinder their installation and maintenance. In this work, we investigate a deep learning one-dimensional convolution neural network (1DCNN) model to estimate rainfall intensity using energy per symbol to noise power density ratio (Es/No) of the signals received from a communication satellite signal coupled with additional data representing satellite daily movement. The findings of this study demonstrate that the performance of the proposed model has a higher accuracy for moderate to heavy rainfall than for light rainfall. The NRMSE values for light rain, moderate rain, and heavy rain are 47.09, 31.78, and 33.58%, respectively. These results show that this method is promising for monitoring heavy rainfall as a flood mitigation effort. However, there is still room to improve the accuracy of the estimation such as using other secondary data that is highly correlated with rain at the satellite transceiver location.

References

Adirosi, E., Facheris, L., Petrolino, A., Giannetti, F., Reggiannini, R., Moretti, M., Scarfone, S., Melani, S., Collard, F., & Bacci, G. (2017). Exploiting Satellite Ka and Ku Links for the Real-Time Estimation of Rain Intensity. 2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2017, 2017-Janua, 1–4. https://doi.org/10.23919/URSIGASS.2017.8105128

Aldrian, E., & Susanto, R. D. (2003). Identification of Three Dominant Rainfall Regions within Indonesia and Their Relationship to Sea Surface Temperature. International Journal of Climatology, 23(12), 1435–1452. https://doi.org/10.1002/joc.950

Allamy, S., & Koerich, A. L. (2022). 1D CNN Architectures for Music Genre Classification. 2021 IEEE Symposium Series on Computational Intelligence (SSCI), 01–07. https://doi.org/10.1109/ssci50451.2021.9659979

Angeloni, S., Adirosi, E., Sapienza, F., Giannetti, F., Francini, F., Magherini, L., Valgimigli, A., Vaccaro, A., Melani, S., Antonini, A., & Baldini, L. (2024). Enhanced Estimation of Rainfall from Opportunistic Microwave Satellite Signals. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–12. https://doi.org/10.1109/TGRS.2023.3349100

Arief, S. M., Siburian, R. H., & Wahyudi, W. (2019). Tingkat Kerentanan Banjir Kota Sorong Papua Barat. Median: Jurnal Ilmu Ilmu Eksakta, 11(2), 23–27. https://doi.org/10.33506/md.v11i2.456

Arslan, C. H., Aydin, K., Urbina, J. V., & Dyrud, L. (2018). Satellite-Link Attenuation Measurement Technique for Estimating Rainfall Accumulation. IEEE Transactions on Geoscience and Remote Sensing, 56(2), 681–693. https://doi.org/10.1109/TGRS.2017.2753045

Chen, C. C., Liu, Z., Yang, G., Wu, C. C., & Ye, Q. (2021). An Improved Fault Diagnosis Using 1d-Convolutional Neural Network Model. Electronics (Switzerland), 10(1), 1–19. https://doi.org/10.3390/electronics10010059

Chen, H. Y., & Lee, C. H. (2021). Deep Learning Approach for Vibration Signals Applications. Sensors, 21(11). https://doi.org/10.3390/s21113929

Colli, M., Stagnaro, M., Caridi, A., Lanza, L. G., Randazzo, A., Pastorino, M., Caviglia, D. D., & Delucchi, A. (2019). A Field Assessment of a Rain Estimation System Based on Satellite-to-Earth Microwave Links. IEEE Transactions on Geoscience and Remote Sensing, 57(5), 2864–2875. https://doi.org/10.1109/TGRS.2018.2878338

Diba, F. D., Samad, M. A., Ghimire, J., & Choi, D. Y. (2021). Wireless Telecommunication Links for Rainfall Monitoring: Deep Learning Approach and Experimental Results. IEEE Access, 9, 66769–66780. https://doi.org/10.1109/ACCESS.2021.3076781

Gharanjik, A., Mishra, K. V., Shankar, B., & Ottersten, B. (2018a). Learning-Based Rainfall Estimation via Communication Satellite Links. 2018 IEEE Statistical Signal Processing Workshop, SSP 2018, 115–119. https://doi.org/10.1109/SSP.2018.8450726

Gharanjik, A., Shankar, M. R. B., Zimmer, F., & Ottersten, B. (2018b). Centralized Rainfall Estimation Using Carrier to Noise of Satellite Communication Links. IEEE Journal on Selected Areas in Communications, 36(5), 1065–1073. https://doi.org/10.1109/JSAC.2018.2832798

Giannetti, F., & Reggiannini, R. (2021). Opportunistic Rain Rate Estimation from Measurements of Satellite Downlink Attenuation: A Survey. Sensors, 21(17), 5872. https://doi.org/10.3390/s21175872

Hamada, J.-I., Yamanaka, M. D., Matsumoto, J., Fukao, S., Winarso, P. A., & Sribimawati, T. (2002). Spatial and Temporal Variations of the Rainy Season over Indonesia and Their Link to ENSO. Journal of the Meteorological Society of Japan. Ser. II, 80(2), 285–310. https://doi.org/10.2151/jmsj.80.285

Ippolito, L. J. (2017). High Throughput Satellites. In Satellite Communications Systems Engineering (pp. 398–422). https://doi.org/10.1002/9781119259411.ch15

Islami, F., Sumijan, S., & Defit, S. (2024). Customized Convolutional Neural Network for Glaucoma Detection in Retinal Fundus Images. Jurnal Penelitian Pendidikan IPA, 10(8), 4606–4613. https://doi.org/10.29303/jppipa.v10i8.7614

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D Convolutional Neural Networks and Applications: A Survey. Mechanical Systems and Signal Processing, 151, 107398. https://doi.org/10.1016/j.ymssp.2020.107398

Kumah, K. K., Hoedjes, J. C. B., David, N., Maathuis, B. H. P., Gao, H. O., & Su, B. Z. (2020). Combining MWL and MSG Seviri Satellite Signals for Rainfall Detection and Estimation. Atmosphere, 11(9), 884. https://doi.org/10.3390/ATMOS11090884

Kumah, K. K., Maathuis, B. H. P., Hoedjes, J. C. B., & Su, Z. (2022). Near Real-Time Estimation of High Spatiotemporal Resolution Rainfall from Cloud Top Properties of the MSG Satellite and Commercial Microwave Link Rainfall Intensities. Atmospheric Research, 279. https://doi.org/10.1016/j.atmosres.2022.106357

Kumar, D. P., Amgoth, T., & Annavarapu, C. S. R. (2019). Machine Learning Algorithms for Wireless Sensor Networks: A Survey. Information Fusion, 49, 1–25. https://doi.org/10.1016/J.INFFUS.2018.09.013

Lin, X., Randall, D. A., & Fowler, L. D. (2000). Diurnal Variability of the Hydrologic Cycle and Radiative Fluxes: Comparisons between Observations and a GCM. Journal of Climate, 13(23), 4159–4179. https://doi.org/10.1175/1520-0442(2000)013<4159:DVOTHC>2.0.CO;2

Mishra, K. V., M. R., B. S., & Ottersten, B. (2020). Deep Rainrate Estimation from Highly Attenuated Downlink Signals of Ground-Based Communications Satellite Terminals. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020), 9021–9025. https://doi.org/10.1109/ICASSP40776.2020.9054729

Moursi, A. S. A., El-Fishawy, N., Djahel, S., & Shouman, M. A. (2022). Enhancing PM2.5 Prediction Using NARX-Based Combined CNN and LSTM Hybrid Model. Sensors, 22(12). https://doi.org/10.3390/s22124418

Mujiati, M., David, D., & Ronte, H. (2021). Analysis of Flash Floods Behaviors in Sentani, Jayapura Regency, Papua Analysis of Flash Floods Behaviors in Sentani, Jayapura Regency, Papua. International Journal of Science Research (ISR), 10(2), 943–946. https://doi.org/10.21275/SR21212115559

Neale, R., & Slingo, J. (2003). The Maritime Continent and Its Role in the Global Climate: A GCM Study. Journal of Climate, 16(5), 834–848. https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2

Noor, A. Z. M., Gernowo, R., & Nurhayati, O. D. (2023). Data Augmentation for Hoax Detection Through the Method of Convolutional Neural Network in Indonesian News. Jurnal Penelitian Pendidikan IPA, 9(7), 5078–5084. https://doi.org/10.29303/jppipa.v9i7.4214

Polz, J., Chwala, C., Graf, M., & Kunstmann, H. (2020). Rain Event Detection in Commercial Microwave Link Attenuation Data Using Convolutional Neural Networks. Atmospheric Measurement Techniques, 13(7), 3835–3853. https://doi.org/10.5194/amt-13-3835-2020

Purwanto, A., & Paiman, P. (2023). Flood Risk Spatial Modeling Based on Geographical Information Systems and Remote Sensing in the Pemangkat Regensi. Jurnal Penelitian Pendidikan IPA, 9(11), 9554–9563. https://doi.org/10.29303/jppipa.v9i11.5264

Qian, J. H. (2008). Why Precipitation Is Mostly Concentrated Over Islands in the Maritime Continent. Journal of the Atmospheric Sciences, 65(4), 1428–1441. https://doi.org/10.1175/2007JAS2422.1

Ramadhan, R., Marzuki, M., Yusnaini, H., Ningsih, A. P., Hashiguchi, H., Shimomai, T., Vonnisa, M., Ulfah, S., Suryanto, W., & Sholihun, S. (2022). Ground Validation of GPM IMERG-F Precipitation Products with the Point Rain Gauge Records on the Extreme Rainfall Over a Mountainous Area of Sumatra Island. Jurnal Penelitian Pendidikan IPA, 8(1), 163–170. https://doi.org/10.29303/jppipa.v8i1.1155

Rossi, T., Sanctis, M. D., Domenico, S. D., Ruggieri, M., & Cianca, E. (2022). Experimental Model of Rainfall Rate Estimation Through the Opportunistic Use of Q-/V-Band Satellite Links. IEEE Transactions on Aerospace and Electronic Systems, 58(5), 3802–3809. https://doi.org/10.1109/TAES.2022.3163128

Singh, K., Scholar, R., Mahajan, A., & Mansotra, V. (2021). 1D-CNN Based Model for Classification and Analysis of Network Attacks. International Journal of Advanced Computer Science and Applications, 12(11), 604–613. https://doi.org/10.14569/IJACSA.2021.0121169

Sorooshian, S., Gao, X., Hsu, K., Maddox, R. A., Hong, Y., Gupta, H. V., & Imam, B. (2002). Diurnal Variability of Tropical Rainfall Retrieved from Combined GOES and TRMM Satellite Information. Journal of Climate, 15(9), 983–1001. https://doi.org/10.1175/1520-0442(2002)015<0983:DVOTRR>2.0.CO;2

Upton, G. J. G., Holt, A. R., Cummings, R. J., Rahimi, A. R., & Goddard, J. W. F. (2005). Microwave Links: The Future for Urban Rainfall Measurement? Atmospheric Research, 77(1-4 SPEC. ISS.), 300–312. https://doi.org/10.1016/j.atmosres.2004.10.009

Wang, J., Fisher, B. L., & Wolff, D. B. (2008). Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements. Journal of Atmospheric and Oceanic Technology, 25(1), 43–56. https://doi.org/10.1175/2007JTECHA895.1

Wardani, A., Akbar, A. J., Handayani, L., & Lubis, A. M. (2023). Correlation Among Rainfall, Humidity, and The El Niño-Southern Oscillation (ENSO) Phenomena in Bengkulu City During the Period from 1985-2020. Jurnal Penelitian Pendidikan IPA, 9(4), 1664–1671. https://doi.org/10.29303/jppipa.v9i4.2971

Worku, L. Y., Mekonnen, A., & Schreck III, C. J. (2019). Diurnal Cycle of Rainfall and Convection Over the Maritime Continent Using TRMM and ISCCP. International Journal of Climatology, 39(13), 5191–5200. https://doi.org/10.1002/joc.6121

Xian, M., Liu, X., Song, K., & Gao, T. (2020a). Reconstruction and Nowcasting of Rainfall Field by Oblique Earth-Space Links Network: Preliminary Results from Numerical Simulation. Remote Sensing, 12(21), 1–22. https://doi.org/10.3390/rs12213598

Xian, M., Liu, X., Yin, M., Song, K., Zhao, S., & Gao, T. (2020b). Rainfall Monitoring Based on Machine Learning by Earth-Space Link in the Ku Band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3656–3668. https://doi.org/10.1109/JSTARS.2020.3004375

Xu, L., Shen, X., Huang, D. D., Feng, X., & Wang, W. (2017). Tomographic Reconstruction of Rainfall Fields Using Satellite Communication Links. 2017 23rd Asia-Pacific Conference on Communications (APCC), 1–5. https://doi.org/10.23919/APCC.2017.8303986

Yamanaka, M. D., Ogino, S.-Y., Wu, P.-M., Jun-Ichi, H., Mori, S., Matsumoto, J., & Syamsudin, F. (2018). Maritime Continent Coastlines Controlling Earth’s Climate. Progress in Earth and Planetary Science, 5(1), 21. https://doi.org/10.1186/s40645-018-0174-9

Yang, S., Sun, C., & Kim, Y. (2021). Indoor 3D Localization Scheme Based on BLE Signal Fingerprinting and 1D Convolutional Neural Network. Electronics (Switzerland), 10(15). https://doi.org/10.3390/electronics10151758

Zaini, A. Z. A., Vonnisa, M., Marzuki, M., & Ramadhan, R. (2023). Seasonal Variation of Rainfall in Indonesia under Normal Conditions without ENSO and IOD Events from 1981-2021. Jurnal Penelitian Pendidikan IPA, 9(11), 9899–9909. https://doi.org/10.29303/jppipa.v9i11.4569

Zhang, Y., Chen, S., Tian, W., & Chen, S. (2021). Radar Reflectivity and Meteorological Factors Merging-Based Precipitation Estimation Neural Network. Earth and Space Science, 8(10), e2021EA001811. https://doi.org/10.1029/2021EA001811

Zhao, Y., Liu, X., Xian, M., & Gao, T. (2021). Statistical Study of Rainfall Inversion Using the Earth-Space Link at the Ku Band: Optimization and Validation for 1 Year of Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 9486–9494. https://doi.org/10.1109/JSTARS.2021.3111336

Author Biographies

Raden Yudha Mardyansyah, Badan Meteorologi Klimatologi dan Geofisika

Budhy Kurniawan, Universitas Indonesia

Santoso Soekirno, Universitas Indonesia

Danang Eko Nuryanto, Badan Meteorologi Klimatologi dan Geofisika

License

Copyright (c) 2024 Raden Yudha Mardyansyah, Budhy Kurniawan, Santoso Soekirno, Danang Eko Nuryanto

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).