Analysis Pork Contamination in Beef Meatballs through Polymerase Chain Reaction in Palu City

Authors

Tresya J. Polibaon , Mariyani , Joni Tandi , Tien Wahyu Handayani , Rahmawati Salsa Dinurrosifa , Ikhsan Hi. Amir Sene

DOI:

10.29303/jppipa.v10i9.9006

Published:

2024-09-25

Issue:

Vol. 10 No. 9 (2024): September

Keywords:

Beef Meatballs, DNA, Halal, Polymerase Chain Reaction

Research Articles

Downloads

How to Cite

Polibaon, T. J., Mariyani, Tandi, J., Handayani, T. W., Dinurrosifa, R. S., & Sene, I. H. A. (2024). Analysis Pork Contamination in Beef Meatballs through Polymerase Chain Reaction in Palu City. Jurnal Penelitian Pendidikan IPA, 10(9), 6574–6579. https://doi.org/10.29303/jppipa.v10i9.9006

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The need for halal products is essential, particularly among various processed beef products like meatballs, which are popular among nearly the entire community. These products are susceptible to issues of meat counterfeiting for greater economic gain. This study aims to determine the smallest DNA concentration that can still be detected and to assess whether there is any pork contamination in meatballs circulating in Palu City using Polymerase Chain Reaction (PCR). This test uses four DNA samples obtained from fresh meat to test the specificity of the primer: wild boar, rat, and goat DNA samples as comparisons, and pig DNA as a positive control. The presence of DNA bands in the agarose gel electrophoresis visualization results indicates that DNA amplification has occurred, meaning that the sample can be detected. The analysis results showed that the primer used (Cyt-b) had good specificity for detecting pork DNA, while the absolute pork DNA concentration of 0.01 ng/µL and the reference meatball DNA with a concentration of 0.01% are the smallest limits that can still be detected using PCR. Of the four meatball samples from Palu City, one sample produced a DNA band, indicating that the sample contains or is contaminated with pig DNA. This method is valid as it meets the specificity test and demonstrates a good detection limit.

References

Abdel-Latif, A., & Osman, G. (2017). Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods, 13(1), 1. https://doi.org/10.1186/s13007-016-0152-4

Aboul-Maaty, N. A.-F., & Oraby, H. A.-S. (2019). Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre, 43(1), 25. https://doi.org/10.1186/s42269-019-0066-1

Ahmed, W., Simpson, S. L., Bertsch, P. M., Bibby, K., Bivins, A., Blackall, L. L., Bofill-Mas, S., Bosch, A., Brandão, J., Choi, P. M., Ciesielski, M., Donner, E., D’Souza, N., Farnleitner, A. H., Gerrity, D., Gonzalez, R., Griffith, J. F., Gyawali, P., Haas, C. N., … Shanks, O. C. (2022). Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of The Total Environment, 805, 149877. https://doi.org/10.1016/j.scitotenv.2021.149877

Ambali, A. R., & Bakar, A. N. (2014). People’s Awareness on Halal Foods and Products: Potential Issues for Policy-makers. Procedia - Social and Behavioral Sciences, 121, 3–25. https://doi.org/10.1016/j.sbspro.2014.01.1104

Aminah, A., Ramadini, R., & Naid, T. (2019). Analisis Cemaran DNA Tikus pada Bakso Daging Sapi yang Beredar di Makassar dengan Metode Polymerase Chain Reaction (PCR): Analysis of Rat DNA Contamination on Beef Meatballs Circulating in Makassar by Polymerase Chain Reaction (PCR) Method. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 5(1), 93–100. https://doi.org/10.22487/j24428744.2019.v5.i1.12036

Artika, I. M., Dewi, Y. P., Nainggolan, I. M., Siregar, J. E., & Antonjaya, U. (2022). Real-Time Polymerase Chain Reaction: Current Techniques, Applications, and Role in COVID-19 Diagnosis. Genes, 13(12), 2387. https://doi.org/10.3390/genes13122387

Barta, C., Bolander, B., Bilby, S., Brown, J., Brown, R., Duryee, A., Edelman, D., Gray, C., Gossett, C., Haddock, A., Helsel, M., Jones, A., Klingseis, M., Leslie, K., Miles, E., & Prawitz, R. (2017). In Situ Dark Adaptation Enhances the Efficiency of DNA Extraction from Mature Pin Oak (Quercus palustris) Leaves, Facilitating the Identification of Partial Sequences of the 18S rRNA and Isoprene Synthase (IspS) Genes. Plants, 6(4), 52. https://doi.org/10.3390/plants6040052

Cheng, C., Fei, Z., & Xiao, P. (2023). Methods to improve the accuracy of next-generation sequencing. Frontiers in Bioengineering and Biotechnology, 11, 982111. https://doi.org/10.3389/fbioe.2023.982111

Dabija, A., Ciocan, M. E., Chetrariu, A., & Codină, G. G. (2021). Maize and Sorghum as Raw Materials for Brewing, a Review. Applied Sciences, 11(7), 3139. https://doi.org/10.3390/app11073139

Demkina, A., Slonova, D., Mamontov, V., Konovalova, O., Yurikova, D., Rogozhin, V., Belova, V., Korostin, D., Sutormin, D., Severinov, K., & Isaev, A. (2023). Benchmarking DNA isolation methods for marine metagenomics. Scientific Reports, 13(1), 22138. https://doi.org/10.1038/s41598-023-48804-z

Dewanata, P. A., & Mushlih, M. (2021). Differences in DNA Purity Test Using UV-Vis Spectrophotometer and Nanodrop Spectrophotometer in Type 2 Diabetes Mellitus Patients. Indonesian Journal of Innovation Studies, 15. https://doi.org/10.21070/ijins.v15i.553

Heikrujam, J., Kishor, R., & Behari Mazumder, P. (2020). The Chemistry Behind Plant DNA Isolation Protocols. In O.-M. Boldura, C. Baltă, & N. Sayed Awwad (Eds.), Biochemical Analysis Tools—Methods for Bio-Molecules Studies. IntechOpen. https://doi.org/10.5772/intechopen.92206

Hermanto, S., Rudiana, T., Zein, M. I. H. L., & Wisudawati, A. W. (2022). Methods Validation of Pork Authentication in Processed Meat Products (Sausages) Through Densitometry Analysis. Indonesian Journal of Halal Research, 4(1), 35–44. https://doi.org/10.15575/ijhar.v4i1.11892

Hu, Y. (2016). Regulatory Concern of Polymerase Chain Reaction (PCR) Carryover Contamination. In A. Samadikuchaksaraei (Ed.), Polymerase Chain Reaction for Biomedical Applications. InTech. https://doi.org/10.5772/66294

Kadri, K. (2020). Polymerase Chain Reaction (PCR): Principle and Applications. In M. L. Nagpal, O.-M. Boldura, C. Baltă, & S. Enany (Eds.), Synthetic Biology—New Interdisciplinary Science. IntechOpen. https://doi.org/10.5772/intechopen.86491

Kim, S.-H., Ko, J., & Kwon, D. Y. (2023). Jang, Korean fermented soybean product, the result of endeavors of ancients for the best taste of Korean diet. Journal of Ethnic Foods, 10(1), 33. https://doi.org/10.1186/s42779-023-00183-6

Lagarde, J., Feurer, C., Denis, M., Douarre, P.-E., Piveteau, P., & Roussel, S. (2024). Listeria monocytogenes prevalence and genomic diversity along the pig and pork production chain. Food Microbiology, 119, 104430. https://doi.org/10.1016/j.fm.2023.104430

Liu, Y., Chen, J., Cheng, Y., Li, Y., Li, X., Zhang, Z., Xu, X., Lin, Y., Xu, J., & Li, Z. (2022). A simple and rapid technique of template preparation for PCR. Frontiers in Microbiology, 13, 1024827. https://doi.org/10.3389/fmicb.2022.1024827

Mabkhot, H. (2023). Factors Affecting the Sustainability of Halal Product Performance: Malaysian Evidence. Sustainability, 15(3), 1850. https://doi.org/10.3390/su15031850

Magqupu, S., Katiyatiya, C. L. F., Chikwanha, O. C., Strydom, P. E., & Mapiye, C. (2023). Quality and safety of pork sold in the informal urban street markets of the Cape Metropole, South Africa. Meat Science, 204, 109270. https://doi.org/10.1016/j.meatsci.2023.109270

Mariyam, S., Bilgic, H., Rietjens, I. M. C. M., & Susanti, D. Y. (2022). Safety Assessment of Questionable Food Additives in the Halal Food Certification: A Review. Indonesian Journal of Halal Research, 4(1), 19–25. https://doi.org/10.15575/ijhar.v4i1.12097

Mariyani, M., Yani, N. N. Y., & Sene, I. Hi. A. (2023). Identifikasi DNA babi sebagai metode validasi untuk autentikasi halal menggunakan polymerase chain reaction. Journal of Pharmaceutical and Sciences, 6(4), 1778–1784. https://doi.org/10.36490/journal-jps.com.v6i4.296

Muflihah, Hardianto, A., Kusumaningtyas, P., Prabowo, S., & Hartati, Y. W. (2023a). DNA-based detection of pork content in food. Heliyon, 9(3), e14418. https://doi.org/10.1016/j.heliyon.2023.e14418

Muflihah, Hardianto, A., Kusumaningtyas, P., Prabowo, S., & Hartati, Y. W. (2023b). DNA-based detection of pork content in food. Heliyon, 9(3), e14418. https://doi.org/10.1016/j.heliyon.2023.e14418

Nwe, M. K., Jangpromma, N., & Taemaitree, L. (2024). Evaluation of molecular inhibitors of loop-mediated isothermal amplification (LAMP). Scientific Reports, 14(1), 5916. https://doi.org/10.1038/s41598-024-55241-z

Pranata, A. W., Yuliana, N. D., Amalia, L., & Darmawan, N. (2021). Volatilomics for halal and non-halal meatball authentication using solid-phase microextraction–gas chromatography–mass spectrometry. Arabian Journal of Chemistry, 14(5), 103146. https://doi.org/10.1016/j.arabjc.2021.103146

Rollin, J., Rong, W., & Massart, S. (2023). Cont-ID: Detection of sample cross-contamination in viral metagenomic data. BMC Biology, 21(1), 217. https://doi.org/10.1186/s12915-023-01708-w

Shang, Y., Zhang, Y., Li, S., Jia, Y., & Ma, A. (2023). Analysis of contamination with drug-resistant bacteria among three types of commercially available pork in Beijing and Shanxi,China. LWT, 187, 115272. https://doi.org/10.1016/j.lwt.2023.115272

Shen, A., Turner, S., & Antonopoulos, G. (2022). Driven to Death: A Chinese Case Study on the Counterfeiting of Automotive Components. Asian Journal of Criminology, 17(3), 311–329. https://doi.org/10.1007/s11417-022-09365-8

Skouridou, V., Tomaso, H., Rau, J., Bashammakh, A. S., El-Shahawi, M. S., Alyoubi, A. O., & O’Sullivan, C. K. (2019). Duplex PCR-ELONA for the detection of pork adulteration in meat products. Food Chemistry, 287, 354–362. https://doi.org/10.1016/j.foodchem.2019.02.095

Sophian, A., Purwaningsih, R., Muindar, M., Igirisa, E. P. J., & Amirullah, M. L. (2021). Short Communication: Analysis of purity and concentration of DNA extracted from intron patho gene-spin extraction on crab processed food product samples. Asian Journal of Tropical Biotechnology, 18(1). https://doi.org/10.13057/biotek/c180103

Umesha, S., Manukumar, H. M., & Raghava, S. (2016). A rapid method for isolation of genomic DNA from food-borne fungal pathogens. 3 Biotech, 6(2), 123. https://doi.org/10.1007/s13205-016-0436-4

Utaminingsih, S., & Sophian, A. (2022). Analysis of Purity and Concentration of DNA Isolation Results on Chondroitin Samples. BiosciED: Journal of Biological Science and Education, 3(2), 56–61. https://doi.org/10.37304/bed.v3i2.5425

Vicente, F., & Pereira, P. C. (2024). Pork Meat Composition and Health: A Review of the Evidence. Foods, 13(12), 1905. https://doi.org/10.3390/foods13121905

Wang, J.-H., Gessler, D. J., Zhan, W., Gallagher, T. L., & Gao, G. (2024). Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduction and Targeted Therapy, 9(1), 78. https://doi.org/10.1038/s41392-024-01780-w

Watkins, M. W. (2018). Exploratory Factor Analysis: A Guide to Best Practice. Journal of Black Psychology, 44(3), 219–246. https://doi.org/10.1177/0095798418771807

Windarsih, A., Riswanto, F. D. O., Bakar, N. K. A., Yuliana, N. D., Dachriyanus, & Rohman, A. (2022). Detection of Pork in Beef Meatballs Using LC-HRMS Based Untargeted Metabolomics and Chemometrics for Halal Authentication. Molecules, 27(23), 8325. https://doi.org/10.3390/molecules27238325

Wisker, Z. L. (2021). The effect of fake news in marketing halal food: A moderating role of religiosity. Journal of Islamic Marketing, 12(3), 558–575. https://doi.org/10.1108/JIMA-09-2020-0276

Zulfa, E. A., Ismail, T. Q., Hayatullah, I. K., & Fitriana, A. (2023). Regulation and law enforcement on the protection of halal products in Indonesia. Cogent Social Sciences, 9(2), 2273344. https://doi.org/10.1080/23311886.2023.2273344

Zulkarnain, M. I., Rahayu, H. T., Herida, A. P., Erfianti, T., Kusumaningrum, H. P., Zainuri, M., Endrawati, H., Widowati, I., Haryanti, W. D. U., & Mahendrajaya, R. T. (2021). Improvement of the potency of microalgae Nannochloropsis and Chaetoceros through antioxidant analysis and optimization of DNA isolation. Journal of Physics: Conference Series, 1943(1), 012080. https://doi.org/10.1088/1742-6596/1943/1/012080

Author Biographies

Tresya J. Polibaon, Pelita Mas College of Pharmacy

Mariyani, Pelita Mas College of Pharmaceutical Sciences

Joni Tandi, Pelita Mas College of Pharmaceutical Sciences

Tien Wahyu Handayani, Pelita Mas College of Pharmaceutical Sciences

Rahmawati Salsa Dinurrosifa, Universitas Negeri Semarang

Ikhsan Hi. Amir Sene, Tadulako Farma Academy of Pharmacy

License

Copyright (c) 2024 Tresya J. Polibaon, Mariyani, Joni Tandi, Tien Wahyu Handayani, Rahmawati Salsa Dinurrosifa, Ikhsan Hi. Amir Sene

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).