Optimizing Thidiazuron Concentrations for Enhanced In Vitro Protocorm Growth of Grammatophyllum stapeliiflorum Orchid

Authors

Zozy Aneloi Noli , Naura Muthiah Arli , Suwirmen

DOI:

10.29303/jppipa.v10i12.9067

Published:

2024-12-31

Issue:

Vol. 10 No. 12 (2024): December

Keywords:

Grammatophyllum stapeliiflorum, In Vitro, MS Media, Protocorm, Thidiazuron

Research Articles

Downloads

How to Cite

Noli, Z. A., Arli, N. M., & Suwirmen. (2024). Optimizing Thidiazuron Concentrations for Enhanced In Vitro Protocorm Growth of Grammatophyllum stapeliiflorum Orchid. Jurnal Penelitian Pendidikan IPA, 10(12), 10886–10892. https://doi.org/10.29303/jppipa.v10i12.9067

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Cytokinins are growth regulators that play a crucial role in cell division and shoot growth. Thidiazuron, a potent cytokinin, was the focus of our research. The research aimed to determine the effect of several concentrations of Thidiazuron on the protocorm growth of Grammatophyllum stapeliiflorum and to identify the best concentration of Thidiazuron (mg/L) for the protocorm growth of G. stapeliflorum orchids in vitro. The research was conducted from January until March 2022 at the Plant Physiology Laboratory, Universitas Andalas, Padang. The research used a Completely Randomized Design (CRD) with 5 treatments and 5 replications. Several concentrations of Thidiazuron were added to MS media with various concentrations: 0 mg L-1 (A), 0.50 mg L-1 (B), 1 mg L-1  (C), 1.50 mg L-1(D), and 2 mg L-1  (E). The parameters in this research were the percentage of life explants, day of shoot appearance, number of shoots, shoot length, number of leaves, number of roots, and root length. The results showed that Thidiazuron significantly affected the protocorm growth of the G. stapeliiflorum orchid compared to the control treatment. Notably, 2 mg L-1  Thidiazuron emerged as the best concentration for all growth parameters of protocorm G. stapeliiflorum, a finding that could significantly impact our understanding of orchid cultivation and plant physiology.

References

Antala, M., Sytar, O., Rastogi, A., & Brestic, M. (2019). Potential of karrikins as novel plant growth regulators in agriculture. Plants, 9, 43. https://doi.org/10.3390/plants9010043

Arli, N. M., & Noli, Z. A. (2024). Shoot Induction of Dendrobium lasianthera J.J.Smith withSeveral Types of Cytokinins through In Vitro Culture. Jurnal Penelitian Pendidikan IPA, 10(4), 2059–2064. https://doi.org/10.29303/jppipa.v10i4.5324

Arli, N. M., Noli, Z. A., & Idris, M. (2023). The Application of Plant Growth Regulators in Propagation of Dendrobium Orchid with Thin Cell Layer (TCL) Technique:A Review. International Journal of Progressive Sciences And, 416–422. https://doi.org/10.52155/ijpsat.v39.2.5505

Celikel, F. G., Zhang, Q., Zhang, Y., Reid, M. S., & Jiang, C. Z. (2021). A cytokinin analog thidiazuron suppresses shoot growth in potted rose plants via the gibberellic acid pathway. Front. Plant Sci, 12, 6. https://doi.org/10.3389/fpls.2021.639717

Chen, Y., Goodale, U. M., Fan, X. L., & Gao, J. Y. (2015). Asymbiotic seed germination and in vitro seedling development of Paphiopedilum spicerianum: An orchid with an extremely small population in China. Global Ecology and Conservation, 3, 367–378. https://doi.org/10.1016/j.gecco.2015.01.002

CITES. (2021). Grammatophyllum stapeliiflorum. https://checklist.cites.org

Debnath, S. C., Ahmad, N., & Faisal, M. (2018). Thidiazuron: From Urea Derivative to Plant Growth Regulator. Singapore: Springer. https://doi.org/10.1007/978-981-10-8004-3

Deli, R. N., Noli, Z. A., & Suwirmen. (2015). Respon Pertumbuhan Nodus (Artemesia vulgaris L.) pada Medium Murashige-Skoog dengan Penambahan Beberapa Zat Pengatur Tumbuh Secara In Vitro. Jurnal Biologi Universitas Andalas, 4(3), 162–168. https://doi.org/10.25077/jbioua.4.3.%25p.2015

Heriansyah, P. (2019). Multiplikasi Embrio Somatis Tanaman Anggrek (Dendrobium sp.) dengan Pemberian Kinetin dan Sukrosa secara In Vitro. Jurnal Ilmiah Pertanian, 15(2), 67–78. https://doi.org/10.31849/jip.v15i2.1974

Hossain, A., Pamanick, B., Venugopalan, V. K., Ibrahimova, U., Rahman, M. A., & Siyal, A. L. (2022). Emerging roles of plant growth regulators for plants adaptation to abiotic stress–induced oxidative stress. In M. Naeem & T. Aftab (Eds.), Emerging Plant Growth Regulators in Agriculture (pp. 1–72). Academic Press. https://doi.org/10.1016/B978-0-323-91005-7.00010-2

Isda, M. N., & Fatonah, S. (2014). Induksi Akar pada Eksplan Tunas Anggrek (Grammatophylum scriptum var. citrinum) secara In Vitro pada Media MS dengan Penambahan NAA Dan BAP. Al-Kauniyah Jurnal Biologi, 7(2), 53–57. https://doi.org/10.15408/kauniyah.v7i2.2715

Jamwal, K., Bhattacharya, S., & Puri, S. (2018). Plant growth regulator medi ated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 9, 26–38. https://doi.org/10.1016/j.jarmap.2017.12.003

Kapoor, M. A., & Singh, A. (2014). In Vitro Regeneration and Bublet Production in Asiatic Lilium. Bionature, 34(1), 15–20. Retrieved from https://shorturl.asia/s6EgM

Karyanti. (2017). Pengaruh Beberapa Jenis Sitokinin Pada Multiplikasi Tunas Anggrek Vanda douglas Secara In Vitro. Jurnal Bioteknologi & Biosains Indonesia, 4(1), 36–42. https://doi.org/10.29122/jbbi.v4i1.2200

Kumari, A., Baskaran, P., Plačková, L., Omámiková, H., Nisler, J., Doležal, K., & Staden, J. (2018). Plant growth regulator interactions in physiological processes for controlling plant regeneration and in vitro development of Tulbaghia simmleri. Journal Plant Physiol, 223, 65–71. https://doi.org/10.1016/j.jplph.2018.01.005

Kumari, A., Baskaran, P., & Staden, J. (2017). In vitro propagation via organogenesis and embryogenesis of Cyrtanthus mackenii: A valuable threatened medicinal plant. Plant Cell Tissue Organ Cult, 131, 407–415. https://doi.org/10.1007/s11240-017-1293-5

Kurniati, R., Khairatunnisa, F., & Indrayanti, R. (2020). Perbanyakan Lili Arumsari Menggunakan Media Generik secara In Vitro. J. Hort. Indonesia, 11(2), 140–148. https://doi.org/10.29244/jhi.11.2.140-148

Li, Y. Y., Hao, Z. G., Miao, S., Zhang, X., Li, J. Q., Guo, S. X., & Lee, Y. I. (2022). Profiles of Cytokinins Metabolic Genes and Endogenous Cytokinins Dynamics during Shoot Multiplication In Vitro of Phalaenopsis. International Journal of Molecular Sciences, 23(7). https://doi.org/10.3390/ijms23073755

Lyczko, J., Piotrowski, K., Kolasa, K., Galek, R., & Szummy, A. (2022). Mentha piperita L. Micropropagation and the Potential Influence of Plant Growth Regulators on Volatile Organic Compound Composition. Molecules, 25(11). https://doi.org/10.3390/molecules25112652

Malek, M., Ghaderi-Far, F., Torabi, B., & Sadeghipour, H. R. (2022). Dynamics of seed dormancy and germination at high temperature stress is affected by priming and phytohormones in rapeseed (Brassica napus L. Journal of Plant Physiology, 269, 153614. https://doi.org/Journal of Plant Physiology

Naeem, M., & Aftab, T. (2022). Emerging Plant Growth Regulators in Agriculture: Roles in Stress Tolerance. Academic Press.

Ngadiani, & Jayanti, T. (2021). Pengaruh Pemberian Hormon NAA dan BAP Pada Media MS (Murashige and Skoog) terhadap Pertumbuhan Anggrek Vanda tricolor Secara In Vitro. Stigma, 14(2), 89–98. https://doi.org/10.36456/stigma.14.02.4885.89-98

Ningrum, E. F. C., Rosyidi, I. N., Puspasari, R. R., & Semiarti, E. (2017). Perkembangan Awal Protocorm Anggrek Phalaenopsis amabilis secara In Vitro setelah Penambahan Zat Pengatur Tumbuh α-Naphtalene Acetic Acid dan Thidiazuron. Biosfera, 34(1), 9–14. https://doi.org/10.20884/1.mib.2017.34.1.393

Nurcahyani, E., Lande, M. L., & Noviantia, R. A. (2017). Induced Resistance of Moon Orchid Planlet (Phalaenopsis amabilis (L.) as Result of The In Vitro Salicylic Acid Selection Toward to Fusarium oxysporum. Jurnal Penelitian Pertanian Terapan, 17(2), 132–137. https://doi.org/10.25181/jppt.v17i2.29

Padmanabhan, P., Murch, S. J., Sullivan, J. A., & Saxena, P. K. (2014). Development of an Efficient Protocol for High Frequency in Vitro Regeneration of a Horticultural Plant Primulina tamiana (B.L. Burtt) Mich. Möller & A. Webber. Canadian Journal of Plant Science, 94(7). https://doi.org/10.4141/CJPS-2014-066

Padmanabhan, P., Murch, S. J., Sullivan, J. A., & Saxena, P. K. (2015). Micropropagation of Primulina dryas (Dunn) Mich. Möller & A. Webber: High Frequency Regeneration from Leaf Explants. Scientia Horticulturae, 192. https://doi.org/10.1016/j.scienta.2015.06.020

Rademacher, W. (2015). Plant growth regulators: backgrounds and uses in plant production. Journal of Plant Growth Regulation, 34, 845–872. https://doi.org/10.1007/s00344-015-9541-6

Reddy, J., Niveshika, N., Shaju, A., Jose, A., & Betty, A. (2021). Plant Growth Regulators Used for in Vitro Micropropagation of Orchids: A Research Review. International Journal of Biological Research, 8(1), 37–42. Retrieved from https://shorturl.asia/roGh4

Restanto, D. P., Kriswanto, B., Khozim, M. N., & Soeparjono, S. (2018). Kajian Thidiazuron (TDZ) dalam Induksi Plb Anggrek Phalaenopsis sp. secara In Vitro. Agritrop, 16(1), 176–185. https://doi.org/10.32528/agr.v16i1.1561

Rineksane, I. A., Nurjaman, D., & Isnawan, B. H. (2015). Kajian Penggunaan Jenis Eksplan dan Thidiazuron untuk Multiplikasi Tunas Adventif Tanaman Sarang Semut (Myrmecodia pendens Merr). Perry). Prosiding Seminar Nasional Forum Komunikasi Perguruan Tinggi Pertanian Indonesia. Retrieved from https://repo-dosen.ulm.ac.id/handle/123456789/12045?show=full

Saifuddin, F. (2016). Pengaruh Indole Acetic Acid (IAA) terhadap Hasil Berat Basah Akhir Planlet Kultur Jaringan Tanaman Jernang (Daemonorops draco Willd. Blume. Jurnal Edukasi Dan Sains Biologi, 5(1), 14–17. Retrieved from https://www.neliti.com/publications/77472/pengaruh-indole-acetic-acid-iaa-terhadap-hasil-berat-basah-akhir-plantlet-kultur

Salsabila, S. N., Fatimah, K., Noorhazira, S., Halimatun, T. S. T. A. B., Aurifullah, M., & Suhana, Z. (2022). Effect of Coconut Water and Peptone in Micropropagation of Phalaenopsis amabilis (L.) Blume Orchid. IOP Conference Series: Earth and Environmental Science, 1102(1), 12002. https://doi.org/10.1088/1755-1315/1102/1/012002

Shabi, A., Tahir, S., Wani, I., Dar, A. S., & Nisar, S. (2018). Adenine Type and Diphenyl Urea Derived Cytokinins Improve the Postharvest Performance of Iris Germanica L. Cut Scapes. Physiology and Molecular Biology of Plants, 24(6). https://doi.org/10.1007/s12298-018-0554-z

Sudheer, W. N., Praveen, N., Al-Khayri, J. M., & Jain, S. M. (2022). Role of Plant Tissue Culture Medium Components. Advances in Plant Tissue Culture. https://doi.org/10.1016/B978-0-323-90795-8.00012-6

Sudiyanti, S., Rusbana, T. B., & Susiyanti. (2017). Inisiasi Tunas Kokoleceran (Vatica bantamensis) pada Berbagai Jenis Media Tanam dan Konsentrasi BAP (Benzyl Amino Purine Secara In Vitro. Jurnal Agro, 4(1), 1–14. Retrieved from https://shorturl.asia/gBJNU

Sulichantini, E. D., Susylowati, & Ramadhan, A. (2020). Respon Morfogenesis Eksplan Pucuk Anggrek Tebu (Grammatophylum speciosum Blume) Secara In Vitro Terhadap Beberapa Konsentrasi Kinetin. Agrifor, 19(2), 281–292. https://doi.org/10.31293/af.v19i2.4718

Sytar, O., Kumari, P., Yadav, S., Brestic, M., & Rastogi, A. (2019). Phytohor mone priming: regulator for heavy metal stress in plants. Journal of Plant Growth Regulation, 38, 739–752. https://doi.org/10.1007/S00344-018-9886-8

Tahaei, S. A., Nasri, M., Soleymani, A., Ghooshchi, F., & Oveysi, M. (2022). Plant growth regulators affecting corn (Zea mays L.) physiology and rab17 expression under drought conditions. Biocatalysis and Agricultural Biotechnology, 41, 102288. https://doi.org/10.1016/j.bcab.2022.102288

Widawati, R. A., Semiarti, E., & Widyastuti, C. T. (2020). Pengaruh Thidiazuron dan Air Kelapa terhadap Perkembangan in vitro Protokorm Vanda tricolor Lindley var. suavis. SEMINAR NASIONAL BIOLOGI 2019 (IP2B III), 318–322. Retrieved from https://shorturl.asia/sLZj4

Author Biographies

Zozy Aneloi Noli, Universitas Andalas

Naura Muthiah Arli, Universitas Andalas

Suwirmen, Universitas Andalas

License

Copyright (c) 2024 Zozy Aneloi Noli, Naura Muthiah Arli, Suwirmen

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).