Supervised Machine Learning for Prediction of Minimum Completeness Criteria (KKM) Scores for Elementary School Students
DOI:
10.29303/jppipa.v10i11.9258Published:
2024-11-25Issue:
Vol. 10 No. 11 (2024): NovemberKeywords:
Classification, KKM, Minimum completeness criteria, Supervised machine learningResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
This study aims to predict potential declines in students' Minimum Completeness Criteria (KKM) in higher grades (4th, 5th, and 6th) by analyzing their cognitive, affective, and psychomotor scores from lower grades (1st, 2nd, and 3rd). Using a quantitative research method, various machine learning algorithms were applied, including Naive Bayes, K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and Neural Networks. The dataset comprised students' scores across cognitive, affective, and psychomotor domains from the lower grades. After training and comparing the models, the Neural Network algorithm demonstrated the best performance, achieving 89% accuracy and 100% recall. These results indicate that the model can help teachers identify students at risk of struggling with KKM standards in higher grades, enabling early interventions. The study concludes that Neural Networks offer a promising tool for early detection of academic challenges in elementary education.
References
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Umar, A. M., Linus, O. U., Arshad, H., Kazaure, A. A., Gana, U., & Kiru, M. U. (2019). Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access, 7, 158820–158846. https://doi.org/10.1109/ACCESS.2019.2945545
Ahadi, A., Lister, R., Haapala, H., & Vihavainen, A. (2015). Exploring Machine Learning Methods to Automatically Identify Students in Need of Assistance. Proceedings of the Eleventh Annual International Conference on International Computing Education Research, 121–130. https://doi.org/10.1145/2787622.2787717
Alexandropoulos, S.-A. N., Kotsiantis, S. B., & Vrahatis, M. N. (2019). Data Preprocessing in Predictive Data Mining. The Knowledge Engineering Review, 34(e1), 1–33. https://doi.org/10.1017/S026988891800036X
Almeida, A., & Azkune, G. (2018). Predicting Human Behaviour with Recurrent Neural Networks. Applied Sciences, 8(2), 1–13. https://doi.org/10.3390/app8020305
Alwosheel, A., Cranenburgh, S. V., & Chorus, C. G. (2018). Is Your Dataset Big Enough? Sample Size Requirements When Using Artificial Neural Networks for Discrete Choice Analysis. Journal of Choice Modelling, 28, 167–182. https://doi.org/10.1016/j.jocm.2018.07.002
Aulia, I., Sujana, A., & Sunaengsih, C. (2024). Application of the Climate Kids Interactive Web to Build Understanding of Concepts and Environmental Awareness of Class VI Students on Global Warming Material. Jurnal Penelitian Pendidikan IPA, 10(1), 246-253. https://doi.org/10.29303/jppipa.v10i1.6386
Ayuningtyas, D., & Kuswandi, P. C. (2024). PteridophytaE-Encyclopedia of Kelud Mountain to Study of the Diversity of Fern Species in the Environment on the RICOSRE Model to Improve Student's Information Literacy. Jurnal Penelitian Pendidikan IPA, 10(1), 254-260. https://doi.org/10.29303/jppipa.v10i1.5917
Azizah, N., Istiyono, E., & Wilujeng, I. (2024). Development of Student Cognitive Learning Outcomes Tests Based on Differentiated Learning. Jurnal Penelitian Pendidikan IPA, 10(1), 194-200. https://doi.org/10.29303/jppipa.v10i1.5080
Blanquero, R., Carrizosa, E., Ramírez-Cobo, P., & Sillero-Denamiel, M. R. (2021). Variable Selection for Naïve Bayes Classification. Computers & Operations Research, 135, 105456. https://doi.org/10.1016/j.cor.2021.105456
Burchinal, M., Foster, T. J., Bezdek, K. G., Bratsch-Hines, M., Blair, C., & Vernon-Feagans, L. (2020). School-Entry Skills Predicting School-Age Academic and Social–Emotional Trajectories. Early Childhood Research Quarterly, 51, 67–80. https://doi.org/10.1016/j.ecresq.2019.08.004
Charbuty, B., & Abdulazeez, A. M. (2021). Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2(01), 20–28. https://doi.org/10.38094/jastt20165
Chasanah, D. N., Siregar, A. M., & Rahmat, R. (2022). Klasifikasi Kelayakan Siswa dalam Menentukan Kelas Unggulan Menggunakan Algoritma K-Nearest Neighbor. Scientific Student Journal for Information, Technology and Science, 3(1), 51–58. Retrieved from https://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/view/421
Chen, S., Webb, G. I., Liu, L., & Ma, X. (2020). A Novel Selective Naïve Bayes Algorithm. Knowledge-Based Systems, 192, 105361. https://doi.org/10.1016/j.knosys.2019.105361
Cole, S., Paulson, A., & Shastry, G. K. (2016). High School Curriculum and Financial Outcomes: The Impact of Mandated Personal Finance and Mathematics Courses. Journal of Human Resources, 51(3), 656–698. https://doi.org/10.3368/jhr.51.3.0113-5410R1
Dwi, D. F., & Audina, R. (2021). Analisis Faktor Penyebab Kesulitan Belajar Matematika Kelas IV Sekolah Dasar Negeri. Cybernetics: Journal Educational Research and Social Studies, 2(3), 94–106. https://doi.org/10.51178/cjerss.v2i3.256
Engelhardt, L. E., Church, J. A., Harden, K. P., & Tucker-Drob, E. M. (2019). Accounting for the Shared Environment in Cognitive Abilities and Academic Achievement with Measured Socioecological Contexts. Developmental Science, 22(1), e12699. https://doi.org/10.1111/desc.12699
Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R., & Zhu, X. X. (2023). A Survey of Uncertainty in Deep Neural Networks. Artificial Intelligence Review, 56(1), 1513–1589. https://doi.org/10.1007/s10462-023-10562-9
Juniawan, E. R., Sumarni, W., & Prasetya, A. T. (2024). Development of Ethno-STEM-Loaded Digital Science Teaching Materials the Process of Making Traditional Sidoarjo Snacks Material of Force and Object Motion to Train Science Literacy in Elementary School Students. Jurnal Penelitian Pendidikan IPA, 10(1), 325-337. https://doi.org/10.29303/jppipa.v10i1.5948
Hartanti, D., Kusrini, K., & Taufiq, E. L. (2018). Penerapan Naïve Bayes Dalams Prediksi Ketercapaian Nilai Kriteria Ketuntasan Minimal Siswa. Jusikom Prima, 2(1), 15–22. Retrieved from https://jurnal.unprimdn.ac.id/index.php/JUSIKOM/article/view/147
Johnson, S. R., & Stage, F. K. (2018). Academic Engagement and Student Success: Do High-Impact Practices Mean Higher Graduation Rates?. The Journal of Higher Education, 89(5), 753–781. https://doi.org/10.1080/00221546.2018.1441107
Karalekas, G., Vologiannidis, S., & Kalomiros, J. (2020). Europa: A Case Study for Teaching Sensors, Data Acquisition and Robotics Via a ROS-Based Educational Robot. Sensors (Switzerland), 20(9). https://doi.org/10.3390/s20092469
Kincade, L., Cook, C. R., & Goerdt, A. (2020). Meta-Analysis and Common Practice Elements of Universal Approaches to Improving Student-Teacher Relationships. Review of Educational Research, 90(5),003465432094683. https://doi.org/10.3102/0034654320946836
Kroesch, A. M., Jozwik, S., Douglas, K. H., Chung, Y.-C., Uphold, N. M., & Baker, E. (2022). Using Technology to Support Academic Learning. The Journal of Special Education, 56(3), 158–167. https://doi.org/10.1177/00224669211070563
Mahdiansyah, M., Sembiring, M. S., Supriyadi, T., Ulumudin, I., & Fujianita, S. (2017). Sistem Penilaian Hasil Belajar dan Kemampuan Guru dalam Melaksanakan Penulisan Berdasarkan Kurikulum 2013 Handal. In Policy Brief Pusat Penelitian Kebijakan Pendidikan dan Kebudayaan.
Marks, G. N. (2016). The Relative Effects of Socio-Economic, Demographic, Non-Cognitive and Cognitive Influences on Student Achievement in Australia. Learning and Individual Differences, 49, 1–10. https://doi.org/10.1016/j.lindif.2016.05.012
Mayanda, I., Yennita, Y., & Islami, N. (2024). The Effect of Wordwall-Assisted Brain-Based Learning to Cognitive Learning Outcomes on Optical Equipment Material. Jurnal Penelitian Pendidikan IPA, 10(1), 261-269. https://doi.org/10.29303/jppipa.v10i1.5518
Murray, D. G., Šimša, J., Klimovic, A., & Indyk, I. (2021). Tf.Data: A Machine Learning Data Processing Framework. Proceedings of the VLDB Endowment, 14(12), 2945–2958. https://doi.org/10.14778/3476311.3476374
Nurita, T., Yuliati, L., Mahdiannur, M. A., Ilhami, F. B., Fauziah, A. N. M., Hendratmoko, A. F., & Puspitarini, S. (2024). Increasing Pre-Service Science Teacher Creativity Through STEM Problem-Solving. Jurnal Penelitian Pendidikan IPA, 10(1), 72-79. https://doi.org/10.29303/jppipa.v10i1.6335
Purwaningsih, E., & Nurelasari, E. (2021). Penerapan K-Nearest Neighbor untuk Klasifikasi Tingkat Kelulusan pada Siswa. Syntax: Jurnal Informatika, 10(1), 46–56. https://doi.org/10.35706/syji.v10i01.5173
Rafidah, H. N., Rachmadiarti, F., & Prastiwi, M. S. (2024). Stepping Together with Nature of Malang Raya: The Development Environmental Changes E-Book Based on Problem Based Learning (PBL). Jurnal Penelitian Pendidikan IPA, 10(7), 3556-3568. https://doi.org/10.29303/jppipa.v10i7.7377
Ridwan, R., Lubis, H., & Kustanto, P. (2020). Implementasi Algoritma Neural Network dalam Memprediksi Tingkat Kelulusan Mahasiswa. Jurnal Media Informatika Budidarma, 4(2), 286. https://doi.org/10.30865/mib.v4i2.2035
Riza, S., Rizki, D., & Ihsan, M. A. N. (2024). The Effect of The Use of Contextual Teaching and Learning (CTL) Learning Model on The Cognitive Value of Students of Elementary School. Jurnal Penelitian Pendidikan IPA, 10(5), 2702-2710. https://doi.org/10.29303/jppipa.v10i5.6988
Saputra, E. P., Maulidah, M., Hidayati, N., & Saryoko, A. (2022). Komparasi Evaluasi Kinerja Siswa Belajar dengan Mengggunakan Algoritma Machine Learning. Jurnal Media Informatika Budidarma, 6(4), 2239–2246. https://doi.org/10.30865/mib.v6i4.4786
Selviani, A., Martiah, A., & Pertiwi, A. (2022). Strategi Guru dalam Pencapaian Kriteria Ketuntasan Minimal (KKM) pada Mata Pelajaran Ekonomi. Journal on Teacher Education, 4(2), 405–411. https://doi.org/10.31004/jote.v4i2.8215
Sen, P. C., Hajra, M., & Ghosh, M. (2020). Supervised Classification Algorithms in Machine Learning: A Survey and Review. In J. K. Mandal & D. Bhattacharya (Eds.), Emerging Technology in Modelling and Graphics (pp. 99–111). Springer Singapore. https://doi.org/10.1007/978-981-13-7403-6_11
Sinaga, Y. R. A., Boleng, D. T., Maasawet, E. T., Akhmad, A., & Rambitan, V. M. M. (2024). Development of Neuroscience-Based Biology Learning Media to Increase Learning Motivation and Cognitive Learning Outcomes of Tenggarong High School Students. Jurnal Penelitian Pendidikan IPA, 10(6), 2916–2926. https://doi.org/10.29303/jppipa.v10i6.7314
Sudais, M., Safwan, M., & Ahmed, S. (2022). Students’ Academic Performance Prediction Model Using Machine Learning. Research Square, 1–20. https://doi.org/10.21203/rs.3.rs-1296035/v1
Sulistiyo, B., Surarso, B., & Syafei, W. A. (2020). Improving the Accuracy of Student Problem Identification Using Rule-Based Machine Learning. E3S Web of Conferences, 202, 0–7. https://doi.org/10.1051/e3sconf/202020215012
Suharti, D. I. (2024). Validity of Creative Interactive-Web and Seamless Learning Media and Learning Models to Improve Students' Creative Thinking Skills and Cognitive Learning Outcomes in High School Biology Subjects. Jurnal Penelitian Pendidikan IPA, 10(7), 3770-3779. https://doi.org/10.29303/jppipa.v10i7.8279
Suryani, S., & Mustakim, M. (2022). Estimasi Keberhasilan Siswa dalam Pemodelan Data Berbasis Learning Menggunakan Algoritma Support Vector Machine. Bulletin of Informatics and Data Science, 1(2), 81–88. https://doi.org/10.61944/bids.v1i2.36
Tungadi, E., Thalib, I., Nur, M., & Utomo, Y. (2018). Machine Learning Penentuan Penerima Beasiswa Peningkatan Prestasi Akademik (PPA) Menggunakan Metode Jaringan Saraf Tiruan (JST). Seminar Nasional Teknik Elektro dan Informatika 2018. September, 391–396.
Xing, Z. (2023). Explore How Family Factors Affect Students’ Academic Performance-Based on Literature Analysis Zhuoran. Journal of Education, Humanities and Social Sciences, 10, 91–98. https://doi.org/10.54097/ehss.v10i.6897
Zhang, N., Wu, L., Yang, J., & Guan, Y. (2018). Naive Bayes Bearing Fault Diagnosis Based on Enhanced Independence of Data. Sensors, 18(2), 1–17. https://doi.org/10.3390/s18020463
Zilz, W., & Pang, Y. (2021). Application of Assistive Technology in Inclusive Classrooms. Disability and Rehabilitation: Assistive Technology, 16(7), 684–686. https://doi.org/10.1080/17483107.2019.1695963
Zulvira, R., Neviyarni, N., & Irdamurni, I. (2021). Karakteristik Siswa Kelas Rendah Sekolah Dasar. Jurnal Pendidikan Tambusai, 5(1), 1846–1851. https://doi.org/10.59188/jurnalsostech.v3i6.810
Author Biographies
Mustakim, Universitas Madako tolitoli
Arham Rahim, Universitas Madako Tolitoli
License
Copyright (c) 2024 Mustakim, Arham Rahim

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).