Supervised Machine Learning for Prediction of Minimum Completeness Criteria (KKM) Scores for Elementary School Students

Authors

Mustakim , Arham Rahim

DOI:

10.29303/jppipa.v10i11.9258

Published:

2024-11-25

Issue:

Vol. 10 No. 11 (2024): November

Keywords:

Classification, KKM, Minimum completeness criteria, Supervised machine learning

Research Articles

Downloads

How to Cite

Mustakim, & Rahim, A. (2024). Supervised Machine Learning for Prediction of Minimum Completeness Criteria (KKM) Scores for Elementary School Students. Jurnal Penelitian Pendidikan IPA, 10(11), 9216–9225. https://doi.org/10.29303/jppipa.v10i11.9258

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

This study aims to predict potential declines in students' Minimum Completeness Criteria (KKM) in higher grades (4th, 5th, and 6th) by analyzing their cognitive, affective, and psychomotor scores from lower grades (1st, 2nd, and 3rd). Using a quantitative research method, various machine learning algorithms were applied, including Naive Bayes, K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and Neural Networks. The dataset comprised students' scores across cognitive, affective, and psychomotor domains from the lower grades. After training and comparing the models, the Neural Network algorithm demonstrated the best performance, achieving 89% accuracy and 100% recall. These results indicate that the model can help teachers identify students at risk of struggling with KKM standards in higher grades, enabling early interventions. The study concludes that Neural Networks offer a promising tool for early detection of academic challenges in elementary education.

References

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Umar, A. M., Linus, O. U., Arshad, H., Kazaure, A. A., Gana, U., & Kiru, M. U. (2019). Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access, 7, 158820–158846. https://doi.org/10.1109/ACCESS.2019.2945545

Ahadi, A., Lister, R., Haapala, H., & Vihavainen, A. (2015). Exploring Machine Learning Methods to Automatically Identify Students in Need of Assistance. Proceedings of the Eleventh Annual International Conference on International Computing Education Research, 121–130. https://doi.org/10.1145/2787622.2787717

Alexandropoulos, S.-A. N., Kotsiantis, S. B., & Vrahatis, M. N. (2019). Data Preprocessing in Predictive Data Mining. The Knowledge Engineering Review, 34(e1), 1–33. https://doi.org/10.1017/S026988891800036X

Almeida, A., & Azkune, G. (2018). Predicting Human Behaviour with Recurrent Neural Networks. Applied Sciences, 8(2), 1–13. https://doi.org/10.3390/app8020305

Alwosheel, A., Cranenburgh, S. V., & Chorus, C. G. (2018). Is Your Dataset Big Enough? Sample Size Requirements When Using Artificial Neural Networks for Discrete Choice Analysis. Journal of Choice Modelling, 28, 167–182. https://doi.org/10.1016/j.jocm.2018.07.002

Aulia, I., Sujana, A., & Sunaengsih, C. (2024). Application of the Climate Kids Interactive Web to Build Understanding of Concepts and Environmental Awareness of Class VI Students on Global Warming Material. Jurnal Penelitian Pendidikan IPA, 10(1), 246-253. https://doi.org/10.29303/jppipa.v10i1.6386

Ayuningtyas, D., & Kuswandi, P. C. (2024). PteridophytaE-Encyclopedia of Kelud Mountain to Study of the Diversity of Fern Species in the Environment on the RICOSRE Model to Improve Student's Information Literacy. Jurnal Penelitian Pendidikan IPA, 10(1), 254-260. https://doi.org/10.29303/jppipa.v10i1.5917

Azizah, N., Istiyono, E., & Wilujeng, I. (2024). Development of Student Cognitive Learning Outcomes Tests Based on Differentiated Learning. Jurnal Penelitian Pendidikan IPA, 10(1), 194-200. https://doi.org/10.29303/jppipa.v10i1.5080

Blanquero, R., Carrizosa, E., Ramírez-Cobo, P., & Sillero-Denamiel, M. R. (2021). Variable Selection for Naïve Bayes Classification. Computers & Operations Research, 135, 105456. https://doi.org/10.1016/j.cor.2021.105456

Burchinal, M., Foster, T. J., Bezdek, K. G., Bratsch-Hines, M., Blair, C., & Vernon-Feagans, L. (2020). School-Entry Skills Predicting School-Age Academic and Social–Emotional Trajectories. Early Childhood Research Quarterly, 51, 67–80. https://doi.org/10.1016/j.ecresq.2019.08.004

Charbuty, B., & Abdulazeez, A. M. (2021). Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2(01), 20–28. https://doi.org/10.38094/jastt20165

Chasanah, D. N., Siregar, A. M., & Rahmat, R. (2022). Klasifikasi Kelayakan Siswa dalam Menentukan Kelas Unggulan Menggunakan Algoritma K-Nearest Neighbor. Scientific Student Journal for Information, Technology and Science, 3(1), 51–58. Retrieved from https://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/view/421

Chen, S., Webb, G. I., Liu, L., & Ma, X. (2020). A Novel Selective Naïve Bayes Algorithm. Knowledge-Based Systems, 192, 105361. https://doi.org/10.1016/j.knosys.2019.105361

Cole, S., Paulson, A., & Shastry, G. K. (2016). High School Curriculum and Financial Outcomes: The Impact of Mandated Personal Finance and Mathematics Courses. Journal of Human Resources, 51(3), 656–698. https://doi.org/10.3368/jhr.51.3.0113-5410R1

Dwi, D. F., & Audina, R. (2021). Analisis Faktor Penyebab Kesulitan Belajar Matematika Kelas IV Sekolah Dasar Negeri. Cybernetics: Journal Educational Research and Social Studies, 2(3), 94–106. https://doi.org/10.51178/cjerss.v2i3.256

Engelhardt, L. E., Church, J. A., Harden, K. P., & Tucker-Drob, E. M. (2019). Accounting for the Shared Environment in Cognitive Abilities and Academic Achievement with Measured Socioecological Contexts. Developmental Science, 22(1), e12699. https://doi.org/10.1111/desc.12699

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R., & Zhu, X. X. (2023). A Survey of Uncertainty in Deep Neural Networks. Artificial Intelligence Review, 56(1), 1513–1589. https://doi.org/10.1007/s10462-023-10562-9

Juniawan, E. R., Sumarni, W., & Prasetya, A. T. (2024). Development of Ethno-STEM-Loaded Digital Science Teaching Materials the Process of Making Traditional Sidoarjo Snacks Material of Force and Object Motion to Train Science Literacy in Elementary School Students. Jurnal Penelitian Pendidikan IPA, 10(1), 325-337. https://doi.org/10.29303/jppipa.v10i1.5948

Hartanti, D., Kusrini, K., & Taufiq, E. L. (2018). Penerapan Naïve Bayes Dalams Prediksi Ketercapaian Nilai Kriteria Ketuntasan Minimal Siswa. Jusikom Prima, 2(1), 15–22. Retrieved from https://jurnal.unprimdn.ac.id/index.php/JUSIKOM/article/view/147

Johnson, S. R., & Stage, F. K. (2018). Academic Engagement and Student Success: Do High-Impact Practices Mean Higher Graduation Rates?. The Journal of Higher Education, 89(5), 753–781. https://doi.org/10.1080/00221546.2018.1441107

Karalekas, G., Vologiannidis, S., & Kalomiros, J. (2020). Europa: A Case Study for Teaching Sensors, Data Acquisition and Robotics Via a ROS-Based Educational Robot. Sensors (Switzerland), 20(9). https://doi.org/10.3390/s20092469

Kincade, L., Cook, C. R., & Goerdt, A. (2020). Meta-Analysis and Common Practice Elements of Universal Approaches to Improving Student-Teacher Relationships. Review of Educational Research, 90(5),003465432094683. https://doi.org/10.3102/0034654320946836

Kroesch, A. M., Jozwik, S., Douglas, K. H., Chung, Y.-C., Uphold, N. M., & Baker, E. (2022). Using Technology to Support Academic Learning. The Journal of Special Education, 56(3), 158–167. https://doi.org/10.1177/00224669211070563

Mahdiansyah, M., Sembiring, M. S., Supriyadi, T., Ulumudin, I., & Fujianita, S. (2017). Sistem Penilaian Hasil Belajar dan Kemampuan Guru dalam Melaksanakan Penulisan Berdasarkan Kurikulum 2013 Handal. In Policy Brief Pusat Penelitian Kebijakan Pendidikan dan Kebudayaan.

Marks, G. N. (2016). The Relative Effects of Socio-Economic, Demographic, Non-Cognitive and Cognitive Influences on Student Achievement in Australia. Learning and Individual Differences, 49, 1–10. https://doi.org/10.1016/j.lindif.2016.05.012

Mayanda, I., Yennita, Y., & Islami, N. (2024). The Effect of Wordwall-Assisted Brain-Based Learning to Cognitive Learning Outcomes on Optical Equipment Material. Jurnal Penelitian Pendidikan IPA, 10(1), 261-269. https://doi.org/10.29303/jppipa.v10i1.5518

Murray, D. G., Šimša, J., Klimovic, A., & Indyk, I. (2021). Tf.Data: A Machine Learning Data Processing Framework. Proceedings of the VLDB Endowment, 14(12), 2945–2958. https://doi.org/10.14778/3476311.3476374

Nurita, T., Yuliati, L., Mahdiannur, M. A., Ilhami, F. B., Fauziah, A. N. M., Hendratmoko, A. F., & Puspitarini, S. (2024). Increasing Pre-Service Science Teacher Creativity Through STEM Problem-Solving. Jurnal Penelitian Pendidikan IPA, 10(1), 72-79. https://doi.org/10.29303/jppipa.v10i1.6335

Purwaningsih, E., & Nurelasari, E. (2021). Penerapan K-Nearest Neighbor untuk Klasifikasi Tingkat Kelulusan pada Siswa. Syntax: Jurnal Informatika, 10(1), 46–56. https://doi.org/10.35706/syji.v10i01.5173

Rafidah, H. N., Rachmadiarti, F., & Prastiwi, M. S. (2024). Stepping Together with Nature of Malang Raya: The Development Environmental Changes E-Book Based on Problem Based Learning (PBL). Jurnal Penelitian Pendidikan IPA, 10(7), 3556-3568. https://doi.org/10.29303/jppipa.v10i7.7377

Ridwan, R., Lubis, H., & Kustanto, P. (2020). Implementasi Algoritma Neural Network dalam Memprediksi Tingkat Kelulusan Mahasiswa. Jurnal Media Informatika Budidarma, 4(2), 286. https://doi.org/10.30865/mib.v4i2.2035

Riza, S., Rizki, D., & Ihsan, M. A. N. (2024). The Effect of The Use of Contextual Teaching and Learning (CTL) Learning Model on The Cognitive Value of Students of Elementary School. Jurnal Penelitian Pendidikan IPA, 10(5), 2702-2710. https://doi.org/10.29303/jppipa.v10i5.6988

Saputra, E. P., Maulidah, M., Hidayati, N., & Saryoko, A. (2022). Komparasi Evaluasi Kinerja Siswa Belajar dengan Mengggunakan Algoritma Machine Learning. Jurnal Media Informatika Budidarma, 6(4), 2239–2246. https://doi.org/10.30865/mib.v6i4.4786

Selviani, A., Martiah, A., & Pertiwi, A. (2022). Strategi Guru dalam Pencapaian Kriteria Ketuntasan Minimal (KKM) pada Mata Pelajaran Ekonomi. Journal on Teacher Education, 4(2), 405–411. https://doi.org/10.31004/jote.v4i2.8215

Sen, P. C., Hajra, M., & Ghosh, M. (2020). Supervised Classification Algorithms in Machine Learning: A Survey and Review. In J. K. Mandal & D. Bhattacharya (Eds.), Emerging Technology in Modelling and Graphics (pp. 99–111). Springer Singapore. https://doi.org/10.1007/978-981-13-7403-6_11

Sinaga, Y. R. A., Boleng, D. T., Maasawet, E. T., Akhmad, A., & Rambitan, V. M. M. (2024). Development of Neuroscience-Based Biology Learning Media to Increase Learning Motivation and Cognitive Learning Outcomes of Tenggarong High School Students. Jurnal Penelitian Pendidikan IPA, 10(6), 2916–2926. https://doi.org/10.29303/jppipa.v10i6.7314

Sudais, M., Safwan, M., & Ahmed, S. (2022). Students’ Academic Performance Prediction Model Using Machine Learning. Research Square, 1–20. https://doi.org/10.21203/rs.3.rs-1296035/v1

Sulistiyo, B., Surarso, B., & Syafei, W. A. (2020). Improving the Accuracy of Student Problem Identification Using Rule-Based Machine Learning. E3S Web of Conferences, 202, 0–7. https://doi.org/10.1051/e3sconf/202020215012

Suharti, D. I. (2024). Validity of Creative Interactive-Web and Seamless Learning Media and Learning Models to Improve Students' Creative Thinking Skills and Cognitive Learning Outcomes in High School Biology Subjects. Jurnal Penelitian Pendidikan IPA, 10(7), 3770-3779. https://doi.org/10.29303/jppipa.v10i7.8279

Suryani, S., & Mustakim, M. (2022). Estimasi Keberhasilan Siswa dalam Pemodelan Data Berbasis Learning Menggunakan Algoritma Support Vector Machine. Bulletin of Informatics and Data Science, 1(2), 81–88. https://doi.org/10.61944/bids.v1i2.36

Tungadi, E., Thalib, I., Nur, M., & Utomo, Y. (2018). Machine Learning Penentuan Penerima Beasiswa Peningkatan Prestasi Akademik (PPA) Menggunakan Metode Jaringan Saraf Tiruan (JST). Seminar Nasional Teknik Elektro dan Informatika 2018. September, 391–396.

Xing, Z. (2023). Explore How Family Factors Affect Students’ Academic Performance-Based on Literature Analysis Zhuoran. Journal of Education, Humanities and Social Sciences, 10, 91–98. https://doi.org/10.54097/ehss.v10i.6897

Zhang, N., Wu, L., Yang, J., & Guan, Y. (2018). Naive Bayes Bearing Fault Diagnosis Based on Enhanced Independence of Data. Sensors, 18(2), 1–17. https://doi.org/10.3390/s18020463

Zilz, W., & Pang, Y. (2021). Application of Assistive Technology in Inclusive Classrooms. Disability and Rehabilitation: Assistive Technology, 16(7), 684–686. https://doi.org/10.1080/17483107.2019.1695963

Zulvira, R., Neviyarni, N., & Irdamurni, I. (2021). Karakteristik Siswa Kelas Rendah Sekolah Dasar. Jurnal Pendidikan Tambusai, 5(1), 1846–1851. https://doi.org/10.59188/jurnalsostech.v3i6.810

Author Biographies

Mustakim, Universitas Madako tolitoli

Arham Rahim, Universitas Madako Tolitoli

License

Copyright (c) 2024 Mustakim, Arham Rahim

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).