Vol. 10 No. 12 (2024): December
Open Access
Peer Reviewed

Mechanical Properties of Nickel, Palladium, and Platinum Nanowires: A Molecular Dynamics Study

Authors

Mauludi Ariesto Pamungkas , Farid Surya Farista , Risalatul Mafazah , Achmad Hidayat

DOI:

10.29303/jppipa.v10i12.9667

Published:

2024-12-31

Downloads

Abstract

Transition metal group 10 nanowires exhibit exceptional mechanical properties, particularly those with FCC structures, making them promising candidates for electromechanical devices. This study used classical MD simulations with EAM potentials to explore the mechanical behavior of nickel, palladium, and platinum nanowires with varying diameters. Our findings reveal a strong correlation between nanowire diameter and mechanical properties. Increasing diameter reduces surface effects, leading to higher tensile strength. Deformation mechanisms are complex, involving phase transformations such as FCC to HCP and BCC. These results will contribute to the fundamental understanding of nanoscale mechanics and pave the way for the design of advanced nanodevices

Keywords:

Mechanical Properties Molecular Dynamics Nanowire

References

Aish, M., & Starostenkov, M. (2016). Mechanical properties of metallic nanowires using tight-binding model. AIP Conference Proceedings, 1698. American Institute of Physics Inc. https://doi.org/10.1063/1.4937842

Benelmekki, M. (2019). Nanomaterials. In The original product of nanotechnology. Morgan & Claypool Publishers. https://doi.org/10.1088/2053-2571/ab126d

Budrovic, Z., Van Swygenhoven, H., Derlet, P. M., Van Petegem, S., & Schmitt, B. (2004). Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel. Science, 304(5668), 273–276. https://doi.org/10.1126/science.1095071

Cao, G., & Wang, Y. (2011). Nanostructures and Nanomaterials. In World Scientific Series in Nanoscience and Nanotechnology. WORLD SCIENTIFIC. https://doi.org/doi:10.1142/7885

Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29, 6443–6453.

Daw, M. S., Foiles, S. M., & Baskes, M. I. (1993). The embedded-atom method: a review of theory and applications. Materials Science Reports, 9(7), 251–310. https://doi.org/https://doi.org/10.1016/0920-2307(93)90001-U

Greenwood, N. N., & Earnshaw, A. (1997). 27 - Nickel, Palladium and Platinum. In N. N. GREENWOOD & A. EARNSHAW (Eds.), Chemistry of the Elements (Second Edition) (pp. 1144–1172). Oxford: Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-7506-3365-9.50033-X

Hasmy, A., & Medina, E. (2002). Thickness Induced Structural Transition in Suspended fcc Metal Nanofilms. Physical Review Letters, 88(9), 96103. https://doi.org/10.1103/PhysRevLett.88.096103

Lao, J., & Moldovan, D. (2008). Surface stress induced structural transformations and pseudoelastic effects in palladium nanowires. Applied Physics Letters, 93(9), 093108. https://doi.org/10.1063/1.2976434

Plimpton, S. (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117(1), 1–19. https://doi.org/https://doi.org/10.1006/jcph.1995.1039

Seo, J.-H., Park, H. S., Yoo, Y., Seong, T.-Y., Li, J., Ahn, J.-P., … Choi, I.-S. (2013). Origin of Size Dependency in Coherent-Twin-Propagation-Mediated Tensile Deformation of Noble Metal Nanowires. Nano Letters, 13(11), 5112–5116. https://doi.org/10.1021/nl402282n

Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 15012. https://doi.org/10.1088/0965-0393/18/1/015012

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., … Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271. https://doi.org/10.1016/j.cpc.2021.108171

Wang, S., Shan, Z., & Huang, H. (2017). The Mechanical Properties of Nanowires. Advanced Science, 4(4), 1600332. https://doi.org/https://doi.org/10.1002/advs.201600332

Wen, Y. H., Huang, R., Zhu, Z. Z., & Wang, Q. (2012). Mechanical properties of platinum nanowires: An atomistic investigation on single-crystalline and twinned structures. Computational Materials Science, 55, 205–210. https://doi.org/10.1016/j.commatsci.2011.11.020

Wen, Y. H., Zhu, Z. Z., Shao, G. F., & Zhu, R. Z. (2005). The uniaxial tensile deformation of Ni nanowire: Atomic-scale computer simulations. Physica E: Low-Dimensional Systems and Nanostructures, 27(1–2), 113–120. https://doi.org/10.1016/j.physe.2004.10.009

Wen, Y.-H., Huang, R., Zhu, Z.-Z., & Wang, Q. (2012). Mechanical properties of platinum nanowires: An atomistic investigation on single-crystalline and twinned structures. Computational Materials Science, 55, 205–210. https://doi.org/https://doi.org/10.1016/j.commatsci.2011.11.020

Wu, H. A. (2006). Molecular dynamics study on mechanics of metal nanowire. Mechanics Research Communications, 33(1), 9–16. https://doi.org/https://doi.org/10.1016/j.mechrescom.2005.05.012

Author Biographies

Mauludi Ariesto Pamungkas, Universitas Brawijaya

Author Origin : Indonesia

Farid Surya Farista, Universitas Brawijaya

Author Origin : Indonesia

Risalatul Mafazah, Universitas Brawijaya

Author Origin : Indonesia

Achmad Hidayat, Universitas Brawijaya

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Pamungkas, M. A., Farista, F. S., Mafazah, R., & Hidayat, A. (2024). Mechanical Properties of Nickel, Palladium, and Platinum Nanowires: A Molecular Dynamics Study . Jurnal Penelitian Pendidikan IPA, 10(12), 11312–11318. https://doi.org/10.29303/jppipa.v10i12.9667