Mechanical Properties of Nickel, Palladium, and Platinum Nanowires: A Molecular Dynamics Study

Authors

Mauludi Ariesto Pamungkas , Farid Surya Farista , Risalatul Mafazah , Achmad Hidayat

DOI:

10.29303/jppipa.v10i12.9667

Published:

2024-12-31

Issue:

Vol. 10 No. 12 (2024): December

Keywords:

Mechanical Properties, Molecular Dynamics, Nanowire

Research Articles

Downloads

How to Cite

Pamungkas, M. A., Farista, F. S., Mafazah, R., & Hidayat, A. (2024). Mechanical Properties of Nickel, Palladium, and Platinum Nanowires: A Molecular Dynamics Study . Jurnal Penelitian Pendidikan IPA, 10(12), 11312–11318. https://doi.org/10.29303/jppipa.v10i12.9667

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Transition metal group 10 nanowires exhibit exceptional mechanical properties, particularly those with FCC structures, making them promising candidates for electromechanical devices. This study used classical MD simulations with EAM potentials to explore the mechanical behavior of nickel, palladium, and platinum nanowires with varying diameters. Our findings reveal a strong correlation between nanowire diameter and mechanical properties. Increasing diameter reduces surface effects, leading to higher tensile strength. Deformation mechanisms are complex, involving phase transformations such as FCC to HCP and BCC. These results will contribute to the fundamental understanding of nanoscale mechanics and pave the way for the design of advanced nanodevices

References

Aish, M., & Starostenkov, M. (2016). Mechanical properties of metallic nanowires using tight-binding model. AIP Conference Proceedings, 1698. American Institute of Physics Inc. https://doi.org/10.1063/1.4937842

Benelmekki, M. (2019). Nanomaterials. In The original product of nanotechnology. Morgan & Claypool Publishers. https://doi.org/10.1088/2053-2571/ab126d

Budrovic, Z., Van Swygenhoven, H., Derlet, P. M., Van Petegem, S., & Schmitt, B. (2004). Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel. Science, 304(5668), 273–276. https://doi.org/10.1126/science.1095071

Cao, G., & Wang, Y. (2011). Nanostructures and Nanomaterials. In World Scientific Series in Nanoscience and Nanotechnology. WORLD SCIENTIFIC. https://doi.org/doi:10.1142/7885

Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29, 6443–6453.

Daw, M. S., Foiles, S. M., & Baskes, M. I. (1993). The embedded-atom method: a review of theory and applications. Materials Science Reports, 9(7), 251–310. https://doi.org/https://doi.org/10.1016/0920-2307(93)90001-U

Greenwood, N. N., & Earnshaw, A. (1997). 27 - Nickel, Palladium and Platinum. In N. N. GREENWOOD & A. EARNSHAW (Eds.), Chemistry of the Elements (Second Edition) (pp. 1144–1172). Oxford: Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-7506-3365-9.50033-X

Hasmy, A., & Medina, E. (2002). Thickness Induced Structural Transition in Suspended fcc Metal Nanofilms. Physical Review Letters, 88(9), 96103. https://doi.org/10.1103/PhysRevLett.88.096103

Lao, J., & Moldovan, D. (2008). Surface stress induced structural transformations and pseudoelastic effects in palladium nanowires. Applied Physics Letters, 93(9), 093108. https://doi.org/10.1063/1.2976434

Plimpton, S. (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117(1), 1–19. https://doi.org/https://doi.org/10.1006/jcph.1995.1039

Seo, J.-H., Park, H. S., Yoo, Y., Seong, T.-Y., Li, J., Ahn, J.-P., … Choi, I.-S. (2013). Origin of Size Dependency in Coherent-Twin-Propagation-Mediated Tensile Deformation of Noble Metal Nanowires. Nano Letters, 13(11), 5112–5116. https://doi.org/10.1021/nl402282n

Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 15012. https://doi.org/10.1088/0965-0393/18/1/015012

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., … Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271. https://doi.org/10.1016/j.cpc.2021.108171

Wang, S., Shan, Z., & Huang, H. (2017). The Mechanical Properties of Nanowires. Advanced Science, 4(4), 1600332. https://doi.org/https://doi.org/10.1002/advs.201600332

Wen, Y. H., Huang, R., Zhu, Z. Z., & Wang, Q. (2012). Mechanical properties of platinum nanowires: An atomistic investigation on single-crystalline and twinned structures. Computational Materials Science, 55, 205–210. https://doi.org/10.1016/j.commatsci.2011.11.020

Wen, Y. H., Zhu, Z. Z., Shao, G. F., & Zhu, R. Z. (2005). The uniaxial tensile deformation of Ni nanowire: Atomic-scale computer simulations. Physica E: Low-Dimensional Systems and Nanostructures, 27(1–2), 113–120. https://doi.org/10.1016/j.physe.2004.10.009

Wen, Y.-H., Huang, R., Zhu, Z.-Z., & Wang, Q. (2012). Mechanical properties of platinum nanowires: An atomistic investigation on single-crystalline and twinned structures. Computational Materials Science, 55, 205–210. https://doi.org/https://doi.org/10.1016/j.commatsci.2011.11.020

Wu, H. A. (2006). Molecular dynamics study on mechanics of metal nanowire. Mechanics Research Communications, 33(1), 9–16. https://doi.org/https://doi.org/10.1016/j.mechrescom.2005.05.012

Author Biographies

Mauludi Ariesto Pamungkas, Universitas Brawijaya

Farid Surya Farista, Universitas Brawijaya

Risalatul Mafazah, Universitas Brawijaya

Achmad Hidayat, Universitas Brawijaya

License

Copyright (c) 2024 Mauludi Ariesto Pamungkas, Farid Surya Farista, Risalatul Mafazah, Achmad Hidayat

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).