The Effect of Adding Variations in the Combination of Anthocyanin Extract and Curcumin Volume Fraction on the Mechanical Properties and Biodegradability of Seaweed-Based Bioplastic Materials
DOI:
10.29303/jppipa.v11i4.9769Published:
2025-04-25Issue:
Vol. 11 No. 4 (2025): AprilKeywords:
Anthocyanin, Bioplastic, Curcumin, SeaweedResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
The environmental issues caused by conventional plastic waste are becoming increasingly serious, driving the development of more eco-friendly bioplastics. This study examines the mechanical properties, solubility, and biodegradability of seaweed-based bioplastics with the addition of curcumin and anthocyanin as additives. The results indicate that bioplastics containing only anthocyanin exhibit the best tensile strength (3.78 ± 0.26 MPa) and elasticity (12.48 ± 0.49 MPa). In contrast, bioplastics containing only curcumin show the lowest mechanical properties. The addition of anthocyanin enhances tensile strength and elasticity through the formation of strong hydrogen bonds with seaweed polymers, whereas curcumin decreases mechanical properties due to less stable molecular interactions. In terms of solubility, anthocyanin recorded the highest value (72.04%), while curcumin had the lowest (37.61%) due to its lower water stability. Regarding biodegradability, the combination of anthocyanin (1.25%) and curcumin (3.75%), as well as pure curcumin (5%), showed the highest degradation rates, whereas a balanced mixture (2.5%:2.5%) exhibited the lowest biodegradability. In conclusion, anthocyanin improves the mechanical properties and solubility of bioplastics, while curcumin supports biodegradability. Seaweed-based bioplastics with added curcumin and anthocyanin show potential as eco-friendly antibacterial materials.
References
Ali, S. S., Abdelkarim, E. A., Elsamahy, T., Al-Tohamy, R., Li, F., Kornaros, M., Zuorro, A., Zhu, D., & Sun, J. (2023). Bioplastic production in terms of life cycle assessment: A state-of-the-art review. Environmental Science and Ecotechnology, 15, 100254. https://doi.org/10.1016/j.ese.2023.100254
Almeida, C. M. R., Magalhães, J. M. C. S., Souza, H. K. S., & Gonçalves, M. P. (2018). The role of choline chloride-based deep eutectic solvent and curcumin on chitosan films properties. Food Hydrocolloids, 81, 456–466. https://doi.org/10.1016/j.foodhyd.2018.03.025
Antelava, A., Damilos, S., Hafeez, S., Manos, G., Al-Salem, S. M., Sharma, B. K., Kohli, K., & Constantinou, A. (2019). Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management. Environmental Management, 64(2), 230–244. https://doi.org/10.1007/s00267-019-01178-3
Benson, N. U., Bassey, D. E., & Palanisami, T. (2021). COVID pollution: Impact of COVID-19 pandemic on global plastic waste footprint. Heliyon, 7(2), e06343. https://doi.org/10.1016/j.heliyon.2021.e06343
Bouloumpasi, E., Hatzikamari, M., Christaki, S., Lazaridou, A., Chatzopoulou, P., Biliaderis, C. G., & Irakli, M. (2024). Assessment of Antioxidant and Antibacterial Potential of Phenolic Extracts from Post-Distillation Solid Residues of Oregano, Rosemary, Sage, Lemon Balm, and Spearmint. Processes, 12(1), 140. https://doi.org/10.3390/pr12010140
D’Almeida, A. P., & De Albuquerque, T. L. (2024). Innovations in Food Packaging: From Bio-Based Materials to Smart Packaging Systems. Processes, 12(10), 2085. https://doi.org/10.3390/pr12102085
Falcão, L. D. S., Coelho, D. B., Veggi, P. C., Campelo, P. H., Albuquerque, P. M., & De Moraes, M. A. (2022). Starch as a Matrix for Incorporation and Release of Bioactive Compounds: Fundamentals and Applications. Polymers, 14(12), 2361. https://doi.org/10.3390/polym14122361
Gilani, I. E., Sayadi, S., Zouari, N., & Al-Ghouti, M. A. (2023). Plastic waste impact and biotechnology: Exploring polymer degradation, microbial role, and sustainable development implications. Bioresource Technology Reports, 24, 101606. https://doi.org/10.1016/j.biteb.2023.101606
Górnicka, J., Mika, M., Wróblewska, O., Siudem, P., & Paradowska, K. (2023). Methods to Improve the Solubility of Curcumin from Turmeric. Life, 13(1), 207. https://doi.org/10.3390/life13010207
Guzman-Puyol, S., Hierrezuelo, J., Benítez, J. J., Tedeschi, G., Porras-Vázquez, J. M., Heredia, A., Athanassiou, A., Romero, D., & Heredia-Guerrero, J. A. (2022). Transparent, UV-blocking, and high barrier cellulose-based bioplastics with naringin as active food packaging materials. International Journal of Biological Macromolecules, 209, 1985–1994. https://doi.org/10.1016/j.ijbiomac.2022.04.177
Hamid, K. H. A., Saupy, N. A. Z. M., Zain, N. M., Mudalip, S. K. A., Shaarani, S. M., & Azman, N. A. M. (2018). Development and characterization of semi-refined carrageenan (SRC) films from Eucheuma cottonii incorporated with glycerol and α-tocopherol for active food packaging application. IOP Conference Series: Materials Science and Engineering, 458, 012022. https://doi.org/10.1088/1757-899X/458/1/012022
Hidayati, S., Zulferiyenni, Maulidia, U., Satyajaya, W., & Hadi, S. (2021). Effect of glycerol concentration and carboxy methyl cellulose on biodegradable film characteristics of seaweed waste. Heliyon, 7(8), e07799. https://doi.org/10.1016/j.heliyon.2021.e07799
Jayarathna, S., Andersson, M., & Andersson, R. (2022). Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14(21), 4557. https://doi.org/10.3390/polym14214557
Khandeparkar, A. S., Paul, R., Sridhar, A., Lakshmaiah, V. V., & Nagella, P. (2024). Eco-friendly innovations in food packaging: A sustainable revolution. Sustainable Chemistry and Pharmacy, 39, 101579. https://doi.org/10.1016/j.scp.2024.101579
Khoiriyah, M., Jason Merari Perangirangin, & Ilham Kuncahyo. (2022). Fenofibrate Characterization of Solid Lipid Nanoparticles Using the High Shear Homogenization Method. Natural Sciences Engineering and Technology Journal, 2(2), 79–86. https://doi.org/10.37275/nasetjournal.v2i2.21
Kumar, R., Verma, A., Shome, A., Sinha, R., Sinha, S., Jha, P. K., Kumar, R., Kumar, P., Shubham, Das, S., Sharma, P., & Vara Prasad, P. V. (2021). Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability, 13(17), 9963. https://doi.org/10.3390/su13179963
Lestari, M. L. A. D., & Indrayanto, G. (2014). Curcumin. In Profiles of Drug Substances, Excipients and Related Methodology (Vol. 39, pp. 113–204). Elsevier. https://doi.org/10.1016/B978-0-12-800173-8.00003-9
Lomartire, S., Marques, J. C., & Gonçalves, A. M. M. (2022). An Overview of the Alternative Use of Seaweeds to Produce Safe and Sustainable Bio-Packaging. Applied Sciences, 12(6), 3123. https://doi.org/10.3390/app12063123
Merino, D., Quilez-Molina, A. I., Perotto, G., Bassani, A., Spigno, G., & Athanassiou, A. (2022). A second life for fruit and vegetable waste: A review on bioplastic films and coatings for potential food protection applications. Green Chemistry, 24(12), 4703–4727. https://doi.org/10.1039/D1GC03904K
Micó-Vicent, B., Ramos, M., Viqueira, V., Luzi, F., Dominici, F., Terenzi, A., Maron, E., Hamzaoui, M., Kohnen, S., Torre, L., Jiménez, A., Puglia, D., & Garrigós, M. C. (2021). Anthocyanin Hybrid Nanopigments from Pomegranate Waste: Colour, Thermomechanical Stability and Environmental Impact of Polyester-Based Bionanocomposites. Polymers, 13(12), 1966. https://doi.org/10.3390/polym13121966
Mondal, S., Ghosh, S., & Moulik, S. P. (2016). Stability of curcumin in different solvent and solution media: UV–visible and steady-state fluorescence spectral study. Journal of Photochemistry and Photobiology B: Biology, 158, 212–218. https://doi.org/10.1016/j.jphotobiol.2016.03.004
Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., & AbdulGhani, A. (2022). Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Current Research in Green and Sustainable Chemistry, 5, 100273. https://doi.org/10.1016/j.crgsc.2022.100273
Negrete-Bolagay, D., & Guerrero, V. H. (2024). Opportunities and Challenges in the Application of Bioplastics: Perspectives from Formulation, Processing, and Performance. Polymers, 16(18), 2561. https://doi.org/10.3390/polym16182561
Nigam, S., Das, A. K., & Patidar, M. K. (2021). Synthesis, characterization and biodegradation of bioplastic films produced from Parthenium hysterophorus by incorporating a plasticizer (PEG600). Environmental Challenges, 5, 100280. https://doi.org/10.1016/j.envc.2021.100280
Oliveira Filho, J. G. D., Braga, A. R. C., Oliveira, B. R. D., Gomes, F. P., Moreira, V. L., Pereira, V. A. C., & Egea, M. B. (2021). The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: A review. Food Research International, 142, 110202. https://doi.org/10.1016/j.foodres.2021.110202
Pan, D., Su, F., Liu, C., & Guo, Z. (2020). Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 3(4), 443–461. https://doi.org/10.1007/s42114-020-00190-0
Perera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2023). Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods, 12(12), 2422. https://doi.org/10.3390/foods12122422
Pilapitiya, P. G. C. N. T., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/j.clema.2024.100220
Pramitasari, R., Gunawicahya, L. N., & Anugrah, D. S. B. (2022). Development of an Indicator Film Based on Cassava Starch–Chitosan Incorporated with Red Dragon Fruit Peel Anthocyanin Extract. Polymers, 14(19), 4142. https://doi.org/10.3390/polym14194142
Roy, S., & Rhim, J.-W. (2021). Antioxidant and antimicrobial poly(vinyl alcohol)-based films incorporated with grapefruit seed extract and curcumin. Journal of Environmental Chemical Engineering, 9(1), 104694. https://doi.org/10.1016/j.jece.2020.104694
Schmaltz, E., Melvin, E. C., Diana, Z., Gunady, E. F., Rittschof, D., Somarelli, J. A., Virdin, J., & Dunphy-Daly, M. M. (2020). Plastic pollution solutions: Emerging technologies to prevent and collect marine plastic pollution. Environment International, 144, 106067. https://doi.org/10.1016/j.envint.2020.106067
Shahidul-Islam, Jaiswal, V., Butola, B. S., & Majumdar, A. (2023). Production of PVA-chitosan films using green synthesized ZnO NPs enriched with dragon fruit extract envisaging food packaging applications. International Journal of Biological Macromolecules, 252, 126457. https://doi.org/10.1016/j.ijbiomac.2023.126457
Shi, C., Guo, C., Wang, S., Li, W., Zhang, X., Lu, S., Ning, C., & Tan, C. (2024). The mechanism of pectin in improving anthocyanin stability and the application progress of their complexes: A review. Food Chemistry: X, 24, 101955. https://doi.org/10.1016/j.fochx.2024.101955
Slaček, G., Kotnik, P., Osmić, A., Postružnik, V., Knez, Ž., Finšgar, M., & Knez Marevci, M. (2023). The Extraction Process, Separation, and Identification of Curcuminoids from Turmeric Curcuma longa. Foods, 12(21), 4000. https://doi.org/10.3390/foods12214000
Taghavi, T., Patel, H., & Rafie, R. (2022). Anthocyanin Extraction Method and Sample Preparation Affect Anthocyanin Yield of Strawberries. Natural Product Communications, 17(5). https://doi.org/10.1177/1934578X221099970
Tarique, J., Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1), 13900. https://doi.org/10.1038/s41598-021-93094-y
Tran, T. T. B., Roach, P., Nguyen, M. H., Pristijono, P., & Vuong, Q. V. (2020). Development of biodegradable films based on seaweed polysaccharides and Gac pulp (Momordica cochinchinensis), the waste generated from Gac oil production. Food Hydrocolloids, 99, 105322. https://doi.org/10.1016/j.foodhyd.2019.105322
Uto-Kondo, H., Naito, Y., Ichikawa, M., Nakata, R., Hagiwara, A., & Kotani, K. (2024). Antioxidant activity, total polyphenol, anthocyanin and benzyl-glucosinolate contents in different phenotypes and portion of Japanese Maca (Lepidium meyenii). Heliyon, 10(12), e32778. https://doi.org/10.1016/j.heliyon.2024.e32778
Wang, W., Liu, X., Guo, F., Yu, Y., Lu, J., Li, Y., Cheng, Q., Peng, J., & Yu, G. (2024). Biodegradable cellulose/curcumin films with Janus structure for food packaging and freshness monitoring. Carbohydrate Polymers, 324, 121516. https://doi.org/10.1016/j.carbpol.2023.121516
Xie, Q., Zheng, X., Li, L., Ma, L., Zhao, Q., Chang, S., & You, L. (2021). Effect of Curcumin Addition on the Properties of Biodegradable Pectin/Chitosan Films. Molecules, 26(8), 2152. https://doi.org/10.3390/molecules26082152
Author Biographies
Nuzulul Rahmah, Univesitas Jember
Sujito, Univesitas Jember
Yuda Cahyoargo Hariadi, Univesitas Jember
License
Copyright (c) 2025 Nuzulul Rahmah, Sujito, Yuda Cahyoargo Hariadi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).