Growth and Yield of Two Tomato Plant Varieties in Dryland Areas with Agronomic Modification Treatments
DOI:
10.29303/jppipa.v10i12.9836Published:
2024-12-25Issue:
Vol. 10 No. 12 (2024): DecemberKeywords:
hybrid, light intensity, organic matter, seaweed biochar, shadingResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
The yield of tomato plants in dryland areas has been suboptimal due to environmental constraints such as poor soil health and high sunlight intensity. Appropriate agronomic modifications are necessary to improve crop yields while maintaining soil health. This study investigated the impact of various agronomic modification treatments on the growth and yield of tomato plants in dryland regions. The experiment was conducted in Gumantar Village, North Lombok Regency, during the dry season from June to August 2023. The agronomic modifications included a seaweed biochar treatment at a rate of 10 tons per hectare and 45% shading, with a control group that had no modifications. Three treatments were tested on two varieties of tomato plants: hybrid and local superior. The treatments were organized with four replications in a randomized complete block design with split plots, where agronomic modifications served as the main plots and the tomato varieties as the subplots. The results indicated that the interaction of agronomic modifications and plant varieties impacted the growth of tomato plants and various environmental factors. The hybrid variety under shading treatment exhibited the best growth. Additionally, this hybrid variety produced 59.6% more fruit than the local superior variety, yielding an average of 66 fruits and weighing 3.00 kg per plant. This study suggests that incorporating agronomic modifications, such as biochar treatment and selecting the appropriate variety, can enhance tomato yields in dryland areas.
References
Adhikari, S., Mahmud, M. P., Nguyen, M. D., & Timms, W. (2023). Evaluating fundamental biochar properties in relation to water holding capacity. Chemosphere, 328, 138620. https://doi.org/10.1016/j.chemosphere.2023.138620
Ahmed, M., Hayat, R., Ahmad, M., Ul-Hassan, M., Kheir, A. M., Ul-Hassan, F., Ur-Rehman, M. H., Shaheen, F. A., Raza, M. A., & Ahmad, S. (2022). Impact of climate change on dryland agricultural systems: a review of current status, potentials, and further work need. International Journal of Plant Production, 16(3), 341-363. https://doi.org/10.1007/s42106-022-00197-1
Akhtar, S. S., Li, G., Andersen, M. N., & Liu, F. (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138, 37-44.
Arrúe, J., Álvaro-Fuentes, J., Plaza-Bonilla, D., Villegas, D., & Cantero-Martínez, C. (2019). Managing drylands for sustainable agriculture. Innovations in Sustainable Agriculture, 529-556. https://doi.org/10.1007/978-3-030-23169-9_17
Bednarczyk, D., Aviv-Sharon, E., Savidor, A., Levin, Y., & Charuvi, D. (2020). Influence of short-term exposure to high light on photosynthesis and proteins involved in photo-protective processes in tomato leaves. Environmental and Experimental Botany, 179, 104198. https://doi.org/10.1016/j.envexpbot.2020.104198
Blackwell, P., Joseph, S., Munroe, P., Anawar, H. M., Storer, P., Gilkes, R. J., & Solaiman, Z. M. (2015). Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere, 25(5), 686-695.
Carrillo-RodrÃguez, J. C., Lobato-Ortiz, R., & Perales-Segovia, C. (2019). Generation and evaluation of heterogeneous genotypes of tomato for small-scale farmers. Journal of Plant Breeding and Crop Science, 11(3), 91-99. https://doi.org/10.5897/JPBCS2018.0782
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., & Hopkins, F. M. (2011). Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Global change biology, 17(11), 3392-3404. https://doi.org/10.1111/j.1365-2486.2011.02496.x
Delgado-Vargas, V. A., Hernández-Bolio, G. I., Hernández-Núñez, E., Gautier, H., Ayala-Garay, O. J., & Garruña, R. (2023). Mesh Crop Cover Optimizes the Microenvironment in a Tropical Region and Modifies the Physiology and Metabolome in Tomato. Horticulturae, 9(6), 636. https://doi.org/10.3390/horticulturae9060636
Deng, L., Zhu, G.-y., Tang, Z.-s., & Shangguan, Z.-p. (2016). Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 5, 127-138. https://doi.org/10.1016/j.gecco.2015.12.004
Ficiciyan, A. M., Loos, J., & Tscharntke, T. (2021). Similar yield benefits of hybrid, conventional, and organic tomato and sweet pepper varieties under well-watered and drought-stressed conditions. Frontiers in Sustainable Food Systems, 5, 628537. https://doi.org/10.3389/fsufs.2021.628537
Geisseler, D., & Scow, K. M. (2014). Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil Biology and Biochemistry, 75, 54-63. https://doi.org/10.1016/j.soilbio.2014.03.023
Gent, M. P. (2007). Effect of degree and duration of shade on quality of greenhouse tomato. HortScience, 42(3), 514-520. https://doi.org/10.21273/HORTSCI.42.3.514
Godi, V., Manohar, K., & Kumari, V. (2018). Effect of different coloured shade nets with varying shade intensities on growth parameters of tomato (Solanum lycopersicum L.) var. Arka Rakshak. International Journal of Pure and Applied Bioscience, 6(1), 142-146.
Grace, J., Lloyd, J., Miranda, A. C., Miranda, H., & Gash, J. (1998). Fluxes of carbon dioxide and water vapour over a C4 pasture in southwestern Amazonia (Brazil). Functional Plant Biology, 25(5), 519-530. https://doi.org/10.1071/PP97120
Hailegnaw, N. S., Mercl, F., Pračke, K., Száková, J., & Tlustoš, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19, 2405-2416.
Hina, N. S. (2024). Global Meta-Analysis of Nitrate Leaching Vulnerability in Synthetic and Organic Fertilizers over the Past Four Decades. Water, 16(3), 457. https://doi.org/10.3390/w16030457
Ilić, Z. S., Milenković, L., Stanojević, L., Cvetković, D., & Fallik, E. (2012). Effects of the modification of light intensity by color shade nets on yield and quality of tomato fruits. Scientia Horticulturae, 139, 90-95.
Jaya, I. K. D. (2021). Cropping strategy in dryland areas with a high rainfall variability: a study from maize farmers in North Lombok, Indonesia. Journal of Agriculture Food and Development, 7, 25-31.
Jaya, I. K. D., Sudika, I. W., Windarningsih, M., & Isnaini, M. (2021). Organic foliar fertilizer to improve yield of cayenne pepper (Capsicum frutescens L.) grown off-season. E3S Web of Conferences, 306, 01016. https://doi.org/10.1051/e3sconf/202130601016
Jote, C. A. (2023). The impacts of using inorganic chemical fertilizers on the environment and human health. Org. Med. Chem. Int. J, 13, 555864. https://doi.org/10.19080/OMCIJ.2023.13.555864
Kaur, I. (2020). Seaweeds: Soil health boosters for sustainable agriculture. Soil Health, 163-182. https://doi.org/10.1007/978-3-030-44364-1_10
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction. In Biochar for environmental management (pp. 1-13). Routledge.
Lei, Y., Xu, L., Wang, M., Sun, S., Yang, Y., & Xu, C. (2024). Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis. Sustainability, 16(15), 6397. https://doi.org/10.3390/su16156397
Li, J., Wang, J.-c., Ding, T.-b., & Chu, D. (2021). Synergistic Effects of a Tomato chlorosis virus and Tomato yellow leaf curl virus Mixed Infection on Host Tomato Plants and the Whitefly Vector. Frontiers in Plant Science, 12, 672400. https://doi.org/10.3389/fpls.2021.672400
López-Marín, J., Gálvez, A., González, A., Egea-Gilabert, C., & Fernandez, J. (2012). Effect of shade on yield, quality and photosynthesis-related parameters of sweet pepper plants. VII International Symposium on Light in Horticultural Systems 956,
Lu, T., Meng, Z., Zhang, G., Qi, M., Sun, Z., Liu, Y., & Li, T. (2017). Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Frontiers in Plant Science, 8, 365. https://doi.org/10.3389/fpls.2017.00365
Luo, J., Yang, Z., Zhang, F., & Li, C. (2023). Effect of nitrogen application on enhancing high-temperature stress tolerance of tomato plants during the flowering and fruiting stage. Frontiers in Plant Science, 14, 1172078. https://doi.org/10.3389/fpls.2023.1172078
Masabni, J., Sun, Y., Niu, G., & Del Valle, P. (2016). Shade effect on growth and productivity of tomato and chili pepper. HortTechnology, 26(3), 344-350. https://doi.org/10.21273/HORTTECH.26.3.344
McLeod, M. K., Sufardi, S., & Harden, S. (2020). Soil fertility constraints and management to increase crop yields in the dryland farming systems of Aceh, Indonesia. Soil Research, 59(1), 68-82. https://doi.org/10.1071/SR19324
Mohawesh, O., Albalasmeh, A., Deb, S., Singh, S., Simpson, C., AlKafaween, N., & Mahadeen, A. (2022). Effect of colored shading nets on the growth and water use efficiency of sweet pepper grown under semi-arid conditions. HortTechnology, 32(1), 21-27. https://doi.org/10.21273/HORTTECH04895-21
Moswetsi, G., Fanadzo, M., & Ncube, B. (2017). Cropping systems and agronomic management practices in smallholder farms in South Africa: constraints, challenges and opportunities. Journal of Agronomy, 16(2), 51-64. https://doi.org/10.3923/ja.2017.51.64
Ozores-Hampton, M., & McAvoy, G. (2010). What causes blossom drop in tomatoes. The Tomato Magazine, 14(4), 4-5.
Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., Bolan, N., Wang, H., & Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1, 3-22.
Plaza, C., Zaccone, C., Sawicka, K., Méndez, A. M., Tarquis, A., Gascó, G., Heuvelink, G. B. M., Schuur, E. A. G., & Maestre, F. T. (2018). Soil resources and element stocks in drylands to face global issues. Scientific reports, 8(1), 13788. https://doi.org/10.1038/s41598-018-32229-0
Rachman, A. (2017). Peluang dan tantangan implementasi model pertanian konservasi di lahan kering. Sumber Daya Lahan, 11(2), 77-90.
Ramos, R. S., Kumar, L., Shabani, F., & Picanço, M. C. (2019). Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios. Agricultural Systems, 173, 524-535. https://doi.org/10.1016/j.agsy.2019.03.020
Rezai, S., Etemadi, N., Nikbakht, A., Yousefi, M., & Majidi, M. M. (2018). Effect of light intensity on leaf morphology, photosynthetic capacity, and chlorophyll content in sage (Salvia officinalis L.). 원예과학기술지, 36(1), 46-57. https://doi.org/10.12972/kjhst.20180006
Ro, S., Chea, L., Ngoun, S., Stewart, Z. P., Roeurn, S., Theam, P., Lim, S., Sor, R., Kosal, M., & Roeun, M. (2021). Response of tomato genotypes under different high temperatures in field and greenhouse conditions. Plants, 10(3), 449. https://doi.org/10.3390/plants10030449
Suriadikarta, D. A. (2012). Teknologi pengelolaan lahan rawa berkelanjutan: studi kasus kawasan ex plg kalimantan tengah. Jurnal Sumberdaya Lahan, 6(1), 140236. https://doi.org/https://do.org/10.2017/jsdl.v6n1.2012.%p
Yang, L., Liu, H., Tang, X., & Li, L. (2022). Tomato evapotranspiration, crop coefficient and irrigation water use efficiency in the winter period in a sunken chinese solar greenhouse. Water, 14(15), 2410. https://doi.org/https://doi.org/10.3390/w14152410
Yeboah, S., Oteng-Darko, P., Adomako, J., & Malimanga, A. R. A. (2020). Biochar application for improved resource use and environmental quality. Applications of biochar for environmental safety, 93. https://doi.org/DOI: 10.5772/intechopen.92427
Yu, K. L., Lau, B. F., Show, P. L., Ong, H. C., Ling, T. C., Chen, W.-H., Ng, E. P., & Chang, J.-S. (2017). Recent developments on algal biochar production and characterization. Bioresource technology, 246, 2-11. https://doi.org/10.1016/j.biortech.2017.08.009
Yu, O.-Y., Raichle, B., & Sink, S. (2013). Impact of biochar on the water holding capacity of loamy sand soil. International Journal of Energy and Environmental Engineering, 4, 1-9. https://doi.org/https://doi.org/10.1186/2251-6832-4-44
Zhu, D., Ciais, P., Krinner, G., Maignan, F., Jornet Puig, A., & Hugelius, G. (2019). Controls of soil organic matter on soil thermal dynamics in the northern high latitudes. Nature communications, 10(1), 3172. https://doi.org/10.1038/s41467-019-11103-1
Author Biographies
Baiq Eliza Prizma Mahardhika, University of Mataram
I Komang Damar Jaya, University of Mataram
Sudirman, University of Mataram
I Gede Putu Wirarama Wedashwara Wirawan, University of Mataram
Bambang Budi Santoso, University of Mataram
License
Copyright (c) 2024 Baiq Eliza Prizma Mahardhika, I Komang Damar Jaya, Sudirman, I Gede Putu Wirarama Wedashwara Wirawan, Bambang Budi Santoso
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).