Rainfall Prediction Using Gate Recurrent Unit (Gru) for The Mataram City Area

Authors

DOI:

10.29303/jppipa.v11i2.9874

Published:

2025-02-25

Issue:

Vol. 11 No. 2 (2025): February

Keywords:

GRU, Rainfall, RMSE

Research Articles

Downloads

How to Cite

Aryoso, G. D., Kanata, B., & Yadnya, M. S. (2025). Rainfall Prediction Using Gate Recurrent Unit (Gru) for The Mataram City Area. Jurnal Penelitian Pendidikan IPA, 11(2), 1114–1119. https://doi.org/10.29303/jppipa.v11i2.9874

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Rainfall prediction is crucial for urban planning, agriculture, and disaster mitigation. This study predicts rainfall intensity in Mataram City using the Gated Recurrent Unit (GRU), a variant of Recurrent Neural Networks (RNN) optimized for sequential data. The dataset consists of hourly rainfall data from NASA's MERRA Power (2010–2021). Data preprocessing includes normalization, feature engineering, and dataset splitting. The GRU model architecture comprises input, GRU, and dense layers. Model performance is evaluated using Root Mean Squared Error (RMSE), yielding 67, 112, 69, and 109 for Ampenan, Cakranegara, Majeluk, and Selaparang, respectively. Results show that the GRU model captures rainfall trends but has limitations in predicting extreme values. This study demonstrates GRU’s potential for improving rainfall forecasting while highlighting the need for further optimization to enhance accuracy.

References

Abeltino, A., Bianchetti, G., Serantoni, C., Ardito, C. F., Malta, D., De Spirito, M., & Maulucci, G. (2022). Personalized metabolic avatar: a data driven model of metabolism for weight variation forecasting and diet plan evaluation. Nutrients, 14(17), 3520. https://doi.org/10.3390/nu14173520

Aprianto, R., Fitriyanto, S., & Nufus, H. (2024). Analisis Pola Musim Hujan dan Kemarau Berdasarkan Prediksi Curah Hujan Tahun 2024 Menggunakan Artificial Neural Network (ANN) di Kabupaten Sumbawa. Titian Ilmu: Jurnal Ilmiah Multi Sciences, 16(1), 25–32. https://doi.org/10.30599/jti.v16i1.3121

Arifah, I. I., Fajri, F. N., Pratamasunu, G. Q. O., & others. (2022). Deteksi Tangan Otomatis Pada Video Percakapan Bahasa Isyarat Indonesia Menggunakan Metode YOLO Dan CNN. Journal of Applied Informatics and Computing, 6(2), 171–176. https://doi.org/10.30871/jaic.v6i2.4694

Avalon Cullen, C., & Al Suhili, R. (2023). Assessing rainfall variability in Jamaica using CHIRPS: techniques and measures for persistence, long and short-term trends. Geographies, 3(2), 375–397. https://doi.org/10.3390/geographies3020020

Berndt, E., Smith, N., Burks, J., White, K., Esmaili, R., Kuciauskas, A., Duran, E., Allen, R., LaFontaine, F., & Szkodzinski, J. (2020). Gridded satellite sounding retrievals in operational weather forecasting: Product description and emerging applications. Remote Sensing, 12(20), 3311. https://doi.org/10.3390/rs12203311

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. (2023). Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619(7970), 533–538. Retrieved from https://www.nature.com/articles/s41586-023-06185-3.

Bochenek, B., & Ustrnul, Z. (2022). Machine learning in weather prediction and climate analyses—applications and perspectives. Atmosphere, 13(2), 180. https://doi.org/10.3390/atmos13020180

Clarke, B., Otto, F., Stuart-Smith, R., & Harrington, L. (2022). Extreme weather impacts of climate change: an attribution perspective. Environmental Research: Climate, 1(1), 12001. https://doi.org/0.1088/2752-5295/ac6e7

Diandra, D., Atsila, F., Akhdan, S., Yudistira, N., & Raihan. (2022). Prediksi Perubahan Iklim di Indonesia pada tahun 2013-2014 menggunakan LSTM. Jurnal Litbang Edusaintech, 3(2), 101–106. https://doi.org/10.51402/jle.v3i2.49

Giordani, A., Cerenzia, I. M. L., Paccagnella, T., & Di Sabatino, S. (2023). SPHERA, a new convection-permitting regional reanalysis over Italy: Improving the description of heavy rainfall. Quarterly Journal of the Royal Meteorological Society, 149(752), 781–808. https://doi.org/10.1002/qj.4428

Hodson, T. O. (2022). Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development Discussions, 2022, 1–10. Retrieved from https://gmd.copernicus.org/articles/15/5481/2022/gmd-15-5481-2022-discussion.html

Hong, Y., & Zhang, Q. (2020). Indicator selection for topic popularity definition based on AHP and deep learning models. Discrete Dynamics in Nature and Society, 2020(1), 9634308. https://doi.org/10.1155/2020/9634308

Ji, C., Peng, T., Zhang, C., Hua, L., & Sun, W. (2021). An Integrated Framework of GRU Based on Improved Whale Optimization Algorithm for Flood Prediction. https://doi.org/10.21203/rs.3.rs-947198/v1

Kalu, O. O., & Madueme, T. C. (2018). Application of artificial neural network (ANN) to enhance power systems protection: a case of the Nigerian 330 kV transmission line. Electrical Engineering, 100, 1467–1479. https://doi.org/10.1007/s00202-017-0599-y

Kumar, V. (2024). Enhancing Solar Cycle 25 and 26 Forecasting with Vipin-Deep-Decomposed-Recomposed Rolling-window (vD2R2w) Model on Sunspot Number Observations. Solar Physics, 299(10), 147. https://doi.org/10.1007/s11207-024-02389-6

Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M., & Börner, J. (2021). Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nature Communications, 12(1), 2591. Retrieved from https://www.nature.com/articles/s41467-021-22840-7

Lesik, E. M., Sianturi, H. L., Geru, A. S., Bernandus, B., & others. (2020). Analisis pola hujan dan distribusi hujan berdasarkan ketinggian tempat di Pulau Flores. Jurnal Fisika: Fisika Sains Dan Aplikasinya, 5(2), 118–128. https://doi.org/10.35508/fisa.v5i2.2451

Li, C., & Qian, G. (2022). Stock price prediction using a frequency decomposition based GRU transformer neural network. Applied Sciences, 13(1), 222. https://doi.org/10.3390/app13010222

Lim, H., Park, Y., Hong, J. H., Yoo, K.-B., & Seo, K.-D. (2024). Use of machine learning techniques for identifying ischemic stroke instead of the rule-based methods: a nationwide population-based study. European Journal of Medical Research, 29(1), 6. https://doi.org/10.1186/s40001-023-01594-6

Mohr, S., Ehret, U., Kunz, M., Ludwig, P., Caldas-Alvarez, A., Daniell, J. E., Ehmele, F., Feldmann, H., Franca, M. J., Gattke, C., & others. (2022). A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe. Part 1: Event description and analysis. Natural Hazards and Earth System Sciences Discussions, 2022, 1–44. https://doi.org/10.5194/nhess-2022-137

Praveen, B., Talukdar, S., Shahfahad, Mahato, S., Mondal, J., Sharma, P., Islam, A. R. M. T., & Rahman, A. (2020). Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 10(1), 10342. Retrieved from https://www.nature.com/articles/s41598-020-67228-7

Setiawan, D. (2021). Analisis curah hujan di Indonesia untuk memetakan daerah potensi banjir dan tanah longsor dengan Metode Cluster Fuzzy C-Means dan Singular Value Decompotition (SVD). Engineering, MAthematics and Computer Science Journal (EMACS), 3(3), 115–120. https://doi.org/10.21512/emacsjournal.v3i3.7428

Tomazzoli, C., Quaglia, D., & Migliorini, S. (2024). Planning the Greenhouse Climatic Mapping Using an Agricultural Robot and Recurrent-Neural-Network-Based Virtual Sensors. IEEE Transactions on AgriFood Electronics. https://doi.org/10.1109/TAFE.2024.3460970

Xiong, B., Fu, M., Cai, Q., Li, X., Lou, L., Ma, H., Meng, X., & Wang, Z. (2022). Forecasting ultra-short-term wind power by multiview gated recurrent unit neural network. Energy Science & Engineering, 10(10), 3972–3986. https://doi.org/10.1002/ese3.1263

Zakiyah, U., Gayatri, A., Maharani, P. D., Mulyanto, M., Arfiati, D., & Loka, W. A. (2024). Mapping Of Ndvi Index Based Mangrove Area And Density Chectarenges Using Landsat 8 Satellites Images In Northern Coastal Area Of East Java Province, Indonesia. Journal of Environmental Engineering and Sustainable Technology, 11(02), 118–127. https://doi.org/10.21776/ub.jeest.2024.011.02.6

Zhang, D., Zhang, Z., Chen, Z., Zhou, Y., Li, F., & Chi, C. (2023). Wind power interval prediction based on variational mode decomposition and the fast gate recurrent unit. Frontiers in Energy Research, 10, 1022578. https://doi.org/10.3389/fenrg.2022.1022578

Zhijian, L., Shaohua, J., Yigao, L., & Min, G. (2022). GDGRU-DTA: predicting drug-target binding affinity based on GNN and double GRU. ArXiv Preprint ArXiv:2204.11857. https://doi.org/10.48550/arXiv.2204.11857

Author Biographies

Galih Dimas Aryoso, Mataram University

Bulkis Kanata, Mataram University

Made Sutha Yadnya, Mataram University

License

Copyright (c) 2025 Galih Dimas Aryoso, Bulkis Kanata, Made Sutha Yadnya

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).