Optimization of Temperature and Drying Time of Encapsulated Synbiotic Powder on the Characteristics and Viability of Microcapsules
DOI:
10.29303/jppipa.v11i1.9979Published:
2025-02-08Downloads
Abstract
The drying process is often a problem in maintaining the stability of probiotics and the quality of microcapsules in the processing of synbiotic microencapsulation. This study aims to optimize the temperature and drying time to maintain the core material's stability and the microcapsules' quality. The research design in this study was a completely randomized design with two factorials, namely drying temperature (30°C, 35°C, and 40°C) and drying time (2, 2.5, and 3 hours). The results showed that the highest viability and efficiency values were obtained in the drying process at 40°C for 2 hours, which were 9.29 log CFU/mL and 98.10%. In addition, the water content and gel strength of the microcapsules obtained also showed optimal conditions. Based on the results obtained, it can be concluded that the drying process at 40°C for 2 hours is the best treatment, with the highest viability and EE values and low water content values.
Keywords:
encapsulation efficiency microencapsulation synbiotics; viabilityReferences
Abka-khajouei, R., Tounsi, L., Shahabi, N., Patel, A. K., Abdelkafi, S., & Michaud, P. (2022). Structures, Properties and Applications of Alginates. Marine Drugs, 20(6), 364. https://doi.org/10.3390/md20060364
Altamirano‐Ríos, A. V., Guadarrama‐Lezama, A. Y., Arroyo‐Maya, I. J., Hernández‐Álvarez, A., & Orozco‐Villafuerte, J. (2022). Effect of encapsulation methods and materials on the survival and viability of Lactobacillus acidophilus: A review. International Journal of Food Science & Technology, 57(7), 4027–4040. https://doi.org/10.1111/ijfs.15779
Armiliandi, R. (2024). Pengaruh Inkubasi Suhu dalam Memproduksi Enzim Xilanase dari Konsorsium Trikultur Bakteri Termofilik. Jurnal Pendidikan Tambusai, 8(1), 15912–15921. https://doi.org/10.31004/jptam.v8i1.14641
Avila-Reyes, S. V., Garcia-Suarez, F. J., Jiménez, M. T., San Martín-Gonzalez, M. F., & Bello-Perez, L. A. (2014). Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability. Carbohydrate Polymers, 102, 423–430. https://doi.org/10.1016/j.carbpol.2013.11.033
Cai, C., Ma, R., Duan, M., Deng, Y., Liu, T., & Lu, D. (2020). Effect of starch film containing thyme essential oil microcapsules on physicochemical activity of mango. LWT, 131, 109700. https://doi.org/10.1016/j.lwt.2020.109700
Clements, E., Nahum, Y., Pérez-Calleja, P., Kim, B., & Nerenberg, R. (2024). Effects of temperature on nitrifying membrane-aerated biofilms: An experimental and modeling study. Water Research, 253, 121272. https://doi.org/10.1016/j.watres.2024.121272
Cokrowati, N., Prasedya, E. S., Ilhami, B. T. K., Hariadi, H., Jumat, M., Jayusri, Waang, D. C. S., & Qoriasmadillah, W. (2022). Introduksi Teknologi Budidaya Sargassum sp. Di Gerupuk Kabupaten Lombok Tengah. Jurnal Pengabdian Magister Pendidikan IPA, 5(4), 343–348. https://doi.org/10.29303/jpmpi.v5i4.2538
Da Silva Fernandes, R., De Moura, M. R., Glenn, G. M., & Aouada, F. A. (2018). Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. Journal of Molecular Liquids, 265, 327–336. https://doi.org/10.1016/j.molliq.2018.06.005
Do Carmo Alves, A. P., Do Carmo Alves, A., Ferreira Rodrigues, R. A., Da Silva Cerozi, B., & Possebon Cyrino, J. E. (2023). Microencapsulation of Bacillus subtilis and oat β-glucan and their application as a synbiotic in fish feed. Journal of Microencapsulation, 40(7), 491–501. https://doi.org/10.1080/02652048.2023.2220394
Fernanda, D. A., & Hariani, D. (2021). Pengaruh Pemberian Sinbiotik dan Enzim dengan Berbagai Konsentrasi pada Pakan terhadap Pertumbuhan Benih Ikan Nila GIFT (Oreochromis sp.). LenteraBio : Berkala Ilmiah Biologi, 9. https://doi.org/10.26740/lenterabio.v9n3.p239-249
Homayouni-Rad, A., Mortazavian, A. M., Mashkani, M. G., Hajipour, N., & Pourjafar, H. (2021). Effect of Alyssum homolocarpum mucilage and inulin microencapsulation on the survivability of Lactobacillus casei in simulated gastrointestinal and high-temperature conditions. Biocatalysis and Agricultural Biotechnology, 35, 102075. https://doi.org/10.1016/j.bcab.2021.102075
Iravani, S., Korbekandi, H., & Mirmohammadi, S. V. (2015). Technology and potential applications of probiotic encapsulation in fermented milk products. Journal of Food Science and Technology, 52(8), 4679–4696. https://doi.org/10.1007/s13197-014-1516-2
Karakas, C. Y., Ordu, H. R., Bozkurt, F., & Karadag, A. (2022). Electrosprayed chitosan‐coated alginate–pectin beads as potential system for colon‐targeted delivery of ellagic acid. Journal of the Science of Food and Agriculture, 102(3), 965–975. https://doi.org/10.1002/jsfa.11430
Koh, W. Y., Lim, X. X., Tan, T.-C., Kobun, R., & Rasti, B. (2022). Encapsulated Probiotics: Potential Techniques and Coating Materials for Non-Dairy Food Applications. Applied Sciences, 12(19), 10005. https://doi.org/10.3390/app121910005
Kusuma, V. R. A. G., Syahputraningrat, G. R., Rahman, H. M., & Fadilah, F. (2022). Pemanfaatan Polimer Alam Kappa-Karagenan dan Glukomanan untuk Mikroenkapsulasi Extra Virgin Olive Oil. Equilibrium Journal of Chemical Engineering, 6(1). https://doi.org/10.20961/equilibrium.v6i1.58249
Łabowska, M. B., Skrodzka, M., Sicińska, H., Michalak, I., & Detyna, J. (2023). Influence of Cross-Linking Conditions on Drying Kinetics of Alginate Hydrogel. Gels, 9(1), 63. https://doi.org/10.3390/gels9010063
Li, Q., Lin, H., Li, J., Liu, L., Huang, J., Cao, Y., Zhao, T., McClements, D. J., Chen, J., Liu, C., Liu, J., Shen, P., & Zhou, M. (2023). Improving probiotic (Lactobacillus casei) viability by encapsulation in alginate-based microgels: Impact of polymeric and colloidal fillers. Food Hydrocolloids, 134, 108028. https://doi.org/10.1016/j.foodhyd.2022.108028
Liu, W., Pan, W., Li, J., Chen, Y., Yu, Q., Rong, L., Xiao, W., Wen, H., & Xie, J. (2022). Dry heat treatment induced the gelatinization, rheology and gel properties changes of chestnut starch. Current Research in Food Science, 5, 28–33. https://doi.org/10.1016/j.crfs.2021.12.004
Mahariawan, I. M. D., Ariffin, N. B., Kusuma, W. E., Yuniarti, A., Beltran, M. A. G., & Hariati, A. M. (2020). Effect of different carbon doses of tapioca (Manihot esculenta) flour on vegetative cells and spore production of Bacillus megaterium. IOP Conference Series: Earth and Environmental Science, 441(1), 012106. https://doi.org/10.1088/1755-1315/441/1/012106
Mahariawan, I. M. D., Kusuma, W. E., Yuniarti, A., & Hariati, A. M. (2020). Effect of temperature and pH combination on vegetative cell growth of Bacillus megaterium. Journal of Physics: Conference Series, 1665(1), 012013. https://doi.org/10.1088/1742-6596/1665/1/012013
Mbye, M., Baig, M. A., AbuQamar, S. F., El‐Tarabily, K. A., Obaid, R. S., Osaili, T. M., Al‐Nabulsi, A. A., Turner, M. S., Shah, N. P., & Ayyash, M. M. (2020). Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1110–1124. https://doi.org/10.1111/1541-4337.12554
Merrifield, D. L., Dimitroglou, A., Foey, A., Davies, S. J., Baker, R. T. M., Bøgwald, J., Castex, M., & Ringø, E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1–2), 1–18. https://doi.org/10.1016/j.aquaculture.2010.02.007
Mohamadzadeh, M., Fazeli, A., & Shojaosadati, S. A. (2024). Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: A review. International Journal of Biological Macromolecules, 259, 129287. https://doi.org/10.1016/j.ijbiomac.2024.129287
Nezamdoost-Sani, N., Khaledabad, M. A., Amiri, S., & Mousavi Khaneghah, A. (2023). Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: An updated review. Food Bioscience, 52, 102433. https://doi.org/10.1016/j.fbio.2023.102433
Ni, F., Luo, X., Zhao, Z., Yuan, J., Song, Y., Liu, C., Huang, M., Dong, L., Xie, H., Cai, L., Ren, G., & Gu, Q. (2023). Enhancing viability of Lactobacillus plantarum encapsulated by alginate-gelatin hydrogel beads during gastrointestinal digestion, storage and in the mimic beverage systems. International Journal of Biological Macromolecules, 224, 94–104. https://doi.org/10.1016/j.ijbiomac.2022.10.106
Nie, E., He, P., Zhang, H., Hao, L., Shao, L., & Lü, F. (2021). How does temperature regulate anaerobic digestion? Renewable and Sustainable Energy Reviews, 150, 111453. https://doi.org/10.1016/j.rser.2021.111453
Okfrianti, Y., Darwis, D., & Pravita, A. (2018). Bakteri Asam Laktat Lactobacillus Plantarum C410LI dan Lactobacillus Rossiae LS6 yang Diisolasi dari Lemea Rejang terhadap Suhu, pH dan Garam Empedu Berpotensi sebagai Prebiotik. Jurnal Ilmu dan Teknologi Kesehatan, 6(1), 49–58. https://doi.org/10.32668/jitek.v6i1.108
Pupa, P., Apiwatsiri, P., Sirichokchatchawan, W., Pirarat, N., Muangsin, N., Shah, A. A., & Prapasarakul, N. (2021). The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Scientific Reports, 11(1), 13753. https://doi.org/10.1038/s41598-021-93263-z
Qi, X., Simsek, S., Chen, B., & Rao, J. (2020). Alginate-based double-network hydrogel improves the viability of encapsulated probiotics during simulated sequential gastrointestinal digestion: Effect of biopolymer type and concentrations. International Journal of Biological Macromolecules, 165, 1675–1685. https://doi.org/10.1016/j.ijbiomac.2020.10.028
Rashedy, S. H., Abd El Hafez, M. S. M., Dar, M. A., Cotas, J., & Pereira, L. (2021). Evaluation and Characterization of Alginate Extracted from Brown Seaweed Collected in the Red Sea. Applied Sciences, 11(14), 6290. https://doi.org/10.3390/app11146290
Razavi, S., Janfaza, S., Tasnim, N., Gibson, D. L., & Hoorfar, M. (2021). Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocolloids, 120, 106882. https://doi.org/10.1016/j.foodhyd.2021.106882
Saravanan, A., Kumar, P. S., Vo, D.-V. N., Jeevanantham, S., Karishma, S., & Yaashikaa, P. R. (2021). A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes. Journal of Hazardous Materials, 419, 126451. https://doi.org/10.1016/j.jhazmat.2021.126451
Schulte, P. M. (2015). The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. Journal of Experimental Biology, 218(12), 1856–1866. https://doi.org/10.1242/jeb.118851
Subagiyo, S., Margino, S., Triyanto, T., & Ari Setyati1,2, W. A. (2015). Effects Of pH, Temperature And Salinity In Growth And Organic Acid Production Of Lactic Acid Bacteria Isolated From Penaeid Shrimp Intestine. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 20(4), 187. https://doi.org/10.14710/ik.ijms.20.4.187-194
Sun, W., Nguyen, Q. D., Sipiczki, G., Ziane, S. R., Hristovski, K., Friedrich, L., Visy, A., Hitka, G., Gere, A., & Bujna, E. (2022). Microencapsulation of Lactobacillus plantarum 299v Strain with Whey Proteins by Lyophilization and Its Application in Production of Probiotic Apple Juices. Applied Sciences, 13(1), 318. https://doi.org/10.3390/app13010318
Tefara, S. F., Begna Jiru, E., & G/Meskel Bairu, A. (2024). Optimization of fermentation condition for production of lactic acid from khat (“Catha edulis”) waste by using immobilized Lactobacillus plantarum. Biomass Conversion and Biorefinery, 14(5), 6637–6647. https://doi.org/10.1007/s13399-022-02797-3
Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241. https://doi.org/10.1016/j.jff.2014.04.030
Vehapi, M., İnan, B., Kayacan-Cakmakoglu, S., Sagdic, O., & Özçimen, D. (2023). Optimization of Growth Conditions for the Production of Bacillus subtilis Using Central Composite Design and Its Antagonism Against Pathogenic Fungi. Probiotics and Antimicrobial Proteins, 15(3), 682–693. https://doi.org/10.1007/s12602-021-09904-2
Yang, P., Wu, W., Chen, J., Jiang, S., Zheng, Z., Deng, Y., Lu, J., Wang, H., Zhou, Y., Geng, Y., & Wang, K. (2023). Thermotolerance improvement of engineered Saccharomyces cerevisiae ERG5 Delta ERG4 Delta ERG3 Delta, molecular mechanism, and its application in corn ethanol production. Biotechnology for Biofuels and Bioproducts, 16(1), 66. https://doi.org/10.1186/s13068-023-02312-4
Zhu, J., Li, X., Liu, L., Li, Y., Qi, B., & Jiang, L. (2022). Preparation of spray-dried soybean oil body microcapsules using maltodextrin: Effects of dextrose equivalence. LWT, 154, 112874. https://doi.org/10.1016/j.lwt.2021.112874
License
Copyright (c) 2025 Lintang Dion Pangestu, I Made Dedi Mahariawan, Ating Yuniarti, Anik Martinah Hariati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






