Vol. 11 No. 1 (2025): January
Open Access
Peer Reviewed

Abstract

The drying process is often a problem in maintaining the stability of probiotics and the quality of microcapsules in the processing of synbiotic microencapsulation. This study aims to optimize the temperature and drying time to maintain the core material's stability and the microcapsules' quality. The research design in this study was a completely randomized design with two factorials, namely drying temperature (30°C, 35°C, and 40°C) and drying time (2, 2.5, and 3 hours). The results showed that the highest viability and efficiency values ​​were obtained in the drying process at 40°C for 2 hours, which were 9.29 log CFU/mL and 98.10%. In addition, the water content and gel strength of the microcapsules obtained also showed optimal conditions. Based on the results obtained, it can be concluded that the drying process at 40°C for 2 hours is the best treatment, with the highest viability and EE values ​​and low water content values.

Keywords:

encapsulation efficiency microencapsulation synbiotics; viability

References

Abka-khajouei, R., Tounsi, L., Shahabi, N., Patel, A. K., Abdelkafi, S., & Michaud, P. (2022). Structures, Properties and Applications of Alginates. Marine Drugs, 20(6), 364. https://doi.org/10.3390/md20060364

Altamirano‐Ríos, A. V., Guadarrama‐Lezama, A. Y., Arroyo‐Maya, I. J., Hernández‐Álvarez, A., & Orozco‐Villafuerte, J. (2022). Effect of encapsulation methods and materials on the survival and viability of Lactobacillus acidophilus: A review. International Journal of Food Science & Technology, 57(7), 4027–4040. https://doi.org/10.1111/ijfs.15779

Armiliandi, R. (2024). Pengaruh Inkubasi Suhu dalam Memproduksi Enzim Xilanase dari Konsorsium Trikultur Bakteri Termofilik. Jurnal Pendidikan Tambusai, 8(1), 15912–15921. https://doi.org/10.31004/jptam.v8i1.14641

Avila-Reyes, S. V., Garcia-Suarez, F. J., Jiménez, M. T., San Martín-Gonzalez, M. F., & Bello-Perez, L. A. (2014). Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability. Carbohydrate Polymers, 102, 423–430. https://doi.org/10.1016/j.carbpol.2013.11.033

Cai, C., Ma, R., Duan, M., Deng, Y., Liu, T., & Lu, D. (2020). Effect of starch film containing thyme essential oil microcapsules on physicochemical activity of mango. LWT, 131, 109700. https://doi.org/10.1016/j.lwt.2020.109700

Clements, E., Nahum, Y., Pérez-Calleja, P., Kim, B., & Nerenberg, R. (2024). Effects of temperature on nitrifying membrane-aerated biofilms: An experimental and modeling study. Water Research, 253, 121272. https://doi.org/10.1016/j.watres.2024.121272

Cokrowati, N., Prasedya, E. S., Ilhami, B. T. K., Hariadi, H., Jumat, M., Jayusri, Waang, D. C. S., & Qoriasmadillah, W. (2022). Introduksi Teknologi Budidaya Sargassum sp. Di Gerupuk Kabupaten Lombok Tengah. Jurnal Pengabdian Magister Pendidikan IPA, 5(4), 343–348. https://doi.org/10.29303/jpmpi.v5i4.2538

Da Silva Fernandes, R., De Moura, M. R., Glenn, G. M., & Aouada, F. A. (2018). Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. Journal of Molecular Liquids, 265, 327–336. https://doi.org/10.1016/j.molliq.2018.06.005

Do Carmo Alves, A. P., Do Carmo Alves, A., Ferreira Rodrigues, R. A., Da Silva Cerozi, B., & Possebon Cyrino, J. E. (2023). Microencapsulation of Bacillus subtilis and oat β-glucan and their application as a synbiotic in fish feed. Journal of Microencapsulation, 40(7), 491–501. https://doi.org/10.1080/02652048.2023.2220394

Fernanda, D. A., & Hariani, D. (2021). Pengaruh Pemberian Sinbiotik dan Enzim dengan Berbagai Konsentrasi pada Pakan terhadap Pertumbuhan Benih Ikan Nila GIFT (Oreochromis sp.). LenteraBio : Berkala Ilmiah Biologi, 9. https://doi.org/10.26740/lenterabio.v9n3.p239-249

Homayouni-Rad, A., Mortazavian, A. M., Mashkani, M. G., Hajipour, N., & Pourjafar, H. (2021). Effect of Alyssum homolocarpum mucilage and inulin microencapsulation on the survivability of Lactobacillus casei in simulated gastrointestinal and high-temperature conditions. Biocatalysis and Agricultural Biotechnology, 35, 102075. https://doi.org/10.1016/j.bcab.2021.102075

Iravani, S., Korbekandi, H., & Mirmohammadi, S. V. (2015). Technology and potential applications of probiotic encapsulation in fermented milk products. Journal of Food Science and Technology, 52(8), 4679–4696. https://doi.org/10.1007/s13197-014-1516-2

Karakas, C. Y., Ordu, H. R., Bozkurt, F., & Karadag, A. (2022). Electrosprayed chitosan‐coated alginate–pectin beads as potential system for colon‐targeted delivery of ellagic acid. Journal of the Science of Food and Agriculture, 102(3), 965–975. https://doi.org/10.1002/jsfa.11430

Koh, W. Y., Lim, X. X., Tan, T.-C., Kobun, R., & Rasti, B. (2022). Encapsulated Probiotics: Potential Techniques and Coating Materials for Non-Dairy Food Applications. Applied Sciences, 12(19), 10005. https://doi.org/10.3390/app121910005

Kusuma, V. R. A. G., Syahputraningrat, G. R., Rahman, H. M., & Fadilah, F. (2022). Pemanfaatan Polimer Alam Kappa-Karagenan dan Glukomanan untuk Mikroenkapsulasi Extra Virgin Olive Oil. Equilibrium Journal of Chemical Engineering, 6(1). https://doi.org/10.20961/equilibrium.v6i1.58249

Łabowska, M. B., Skrodzka, M., Sicińska, H., Michalak, I., & Detyna, J. (2023). Influence of Cross-Linking Conditions on Drying Kinetics of Alginate Hydrogel. Gels, 9(1), 63. https://doi.org/10.3390/gels9010063

Li, Q., Lin, H., Li, J., Liu, L., Huang, J., Cao, Y., Zhao, T., McClements, D. J., Chen, J., Liu, C., Liu, J., Shen, P., & Zhou, M. (2023). Improving probiotic (Lactobacillus casei) viability by encapsulation in alginate-based microgels: Impact of polymeric and colloidal fillers. Food Hydrocolloids, 134, 108028. https://doi.org/10.1016/j.foodhyd.2022.108028

Liu, W., Pan, W., Li, J., Chen, Y., Yu, Q., Rong, L., Xiao, W., Wen, H., & Xie, J. (2022). Dry heat treatment induced the gelatinization, rheology and gel properties changes of chestnut starch. Current Research in Food Science, 5, 28–33. https://doi.org/10.1016/j.crfs.2021.12.004

Mahariawan, I. M. D., Ariffin, N. B., Kusuma, W. E., Yuniarti, A., Beltran, M. A. G., & Hariati, A. M. (2020). Effect of different carbon doses of tapioca (Manihot esculenta) flour on vegetative cells and spore production of Bacillus megaterium. IOP Conference Series: Earth and Environmental Science, 441(1), 012106. https://doi.org/10.1088/1755-1315/441/1/012106

Mahariawan, I. M. D., Kusuma, W. E., Yuniarti, A., & Hariati, A. M. (2020). Effect of temperature and pH combination on vegetative cell growth of Bacillus megaterium. Journal of Physics: Conference Series, 1665(1), 012013. https://doi.org/10.1088/1742-6596/1665/1/012013

Mbye, M., Baig, M. A., AbuQamar, S. F., El‐Tarabily, K. A., Obaid, R. S., Osaili, T. M., Al‐Nabulsi, A. A., Turner, M. S., Shah, N. P., & Ayyash, M. M. (2020). Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1110–1124. https://doi.org/10.1111/1541-4337.12554

Merrifield, D. L., Dimitroglou, A., Foey, A., Davies, S. J., Baker, R. T. M., Bøgwald, J., Castex, M., & Ringø, E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1–2), 1–18. https://doi.org/10.1016/j.aquaculture.2010.02.007

Mohamadzadeh, M., Fazeli, A., & Shojaosadati, S. A. (2024). Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: A review. International Journal of Biological Macromolecules, 259, 129287. https://doi.org/10.1016/j.ijbiomac.2024.129287

Nezamdoost-Sani, N., Khaledabad, M. A., Amiri, S., & Mousavi Khaneghah, A. (2023). Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: An updated review. Food Bioscience, 52, 102433. https://doi.org/10.1016/j.fbio.2023.102433

Ni, F., Luo, X., Zhao, Z., Yuan, J., Song, Y., Liu, C., Huang, M., Dong, L., Xie, H., Cai, L., Ren, G., & Gu, Q. (2023). Enhancing viability of Lactobacillus plantarum encapsulated by alginate-gelatin hydrogel beads during gastrointestinal digestion, storage and in the mimic beverage systems. International Journal of Biological Macromolecules, 224, 94–104. https://doi.org/10.1016/j.ijbiomac.2022.10.106

Nie, E., He, P., Zhang, H., Hao, L., Shao, L., & Lü, F. (2021). How does temperature regulate anaerobic digestion? Renewable and Sustainable Energy Reviews, 150, 111453. https://doi.org/10.1016/j.rser.2021.111453

Okfrianti, Y., Darwis, D., & Pravita, A. (2018). Bakteri Asam Laktat Lactobacillus Plantarum C410LI dan Lactobacillus Rossiae LS6 yang Diisolasi dari Lemea Rejang terhadap Suhu, pH dan Garam Empedu Berpotensi sebagai Prebiotik. Jurnal Ilmu dan Teknologi Kesehatan, 6(1), 49–58. https://doi.org/10.32668/jitek.v6i1.108

Pupa, P., Apiwatsiri, P., Sirichokchatchawan, W., Pirarat, N., Muangsin, N., Shah, A. A., & Prapasarakul, N. (2021). The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Scientific Reports, 11(1), 13753. https://doi.org/10.1038/s41598-021-93263-z

Qi, X., Simsek, S., Chen, B., & Rao, J. (2020). Alginate-based double-network hydrogel improves the viability of encapsulated probiotics during simulated sequential gastrointestinal digestion: Effect of biopolymer type and concentrations. International Journal of Biological Macromolecules, 165, 1675–1685. https://doi.org/10.1016/j.ijbiomac.2020.10.028

Rashedy, S. H., Abd El Hafez, M. S. M., Dar, M. A., Cotas, J., & Pereira, L. (2021). Evaluation and Characterization of Alginate Extracted from Brown Seaweed Collected in the Red Sea. Applied Sciences, 11(14), 6290. https://doi.org/10.3390/app11146290

Razavi, S., Janfaza, S., Tasnim, N., Gibson, D. L., & Hoorfar, M. (2021). Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocolloids, 120, 106882. https://doi.org/10.1016/j.foodhyd.2021.106882

Saravanan, A., Kumar, P. S., Vo, D.-V. N., Jeevanantham, S., Karishma, S., & Yaashikaa, P. R. (2021). A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes. Journal of Hazardous Materials, 419, 126451. https://doi.org/10.1016/j.jhazmat.2021.126451

Schulte, P. M. (2015). The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. Journal of Experimental Biology, 218(12), 1856–1866. https://doi.org/10.1242/jeb.118851

Subagiyo, S., Margino, S., Triyanto, T., & Ari Setyati1,2, W. A. (2015). Effects Of pH, Temperature And Salinity In Growth And Organic Acid Production Of Lactic Acid Bacteria Isolated From Penaeid Shrimp Intestine. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 20(4), 187. https://doi.org/10.14710/ik.ijms.20.4.187-194

Sun, W., Nguyen, Q. D., Sipiczki, G., Ziane, S. R., Hristovski, K., Friedrich, L., Visy, A., Hitka, G., Gere, A., & Bujna, E. (2022). Microencapsulation of Lactobacillus plantarum 299v Strain with Whey Proteins by Lyophilization and Its Application in Production of Probiotic Apple Juices. Applied Sciences, 13(1), 318. https://doi.org/10.3390/app13010318

Tefara, S. F., Begna Jiru, E., & G/Meskel Bairu, A. (2024). Optimization of fermentation condition for production of lactic acid from khat (“Catha edulis”) waste by using immobilized Lactobacillus plantarum. Biomass Conversion and Biorefinery, 14(5), 6637–6647. https://doi.org/10.1007/s13399-022-02797-3

Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241. https://doi.org/10.1016/j.jff.2014.04.030

Vehapi, M., İnan, B., Kayacan-Cakmakoglu, S., Sagdic, O., & Özçimen, D. (2023). Optimization of Growth Conditions for the Production of Bacillus subtilis Using Central Composite Design and Its Antagonism Against Pathogenic Fungi. Probiotics and Antimicrobial Proteins, 15(3), 682–693. https://doi.org/10.1007/s12602-021-09904-2

Yang, P., Wu, W., Chen, J., Jiang, S., Zheng, Z., Deng, Y., Lu, J., Wang, H., Zhou, Y., Geng, Y., & Wang, K. (2023). Thermotolerance improvement of engineered Saccharomyces cerevisiae ERG5 Delta ERG4 Delta ERG3 Delta, molecular mechanism, and its application in corn ethanol production. Biotechnology for Biofuels and Bioproducts, 16(1), 66. https://doi.org/10.1186/s13068-023-02312-4

Zhu, J., Li, X., Liu, L., Li, Y., Qi, B., & Jiang, L. (2022). Preparation of spray-dried soybean oil body microcapsules using maltodextrin: Effects of dextrose equivalence. LWT, 154, 112874. https://doi.org/10.1016/j.lwt.2021.112874

Author Biographies

Lintang Dion Pangestu, Universitas Brawijaya

Author Origin : Indonesia

I Made Dedi Mahariawan, Universitas Brawijaya

Author Origin : Indonesia

Ating Yuniarti, Universitas Brawijaya

Author Origin : Indonesia

Anik Martinah Hariati, Universitas Brawijaya

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Pangestu, L. D., Mahariawan, I. M. D., Yuniarti, A., & Hariati, A. M. (2025). Optimization of Temperature and Drying Time of Encapsulated Synbiotic Powder on the Characteristics and Viability of Microcapsules. Jurnal Penelitian Pendidikan IPA, 11(1), 1049–1056. https://doi.org/10.29303/jppipa.v11i1.9979