The Effect of Storage Time of Water Hyacinth Liquid Organic Fertilizer on Microorganism Viability and Potency

Authors

Yun Sondang , Trisia Wulantika , Ramond Siregar

DOI:

10.29303/jppipa.v10i12.10018

Published:

2024-12-31

Issue:

Vol. 10 No. 12 (2024): December

Keywords:

Length of storage, Potency, Viability

Research Articles

Downloads

How to Cite

Sondang, Y., Wulantika, T., & Siregar, R. (2024). The Effect of Storage Time of Water Hyacinth Liquid Organic Fertilizer on Microorganism Viability and Potency . Jurnal Penelitian Pendidikan IPA, 10(12), 10971–10979. https://doi.org/10.29303/jppipa.v10i12.10018

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The quality of biological organic fertilizer is determined by the viability of microorganisms during storage until the fertilizer is applied to the field. The purpose of this study was to determine the effect of length of storage of biological organic fertilizer on the viability of microorganisms, and identify the types of microorganisms that can survive in several storage periods and their potential. The research was conducted at the Payakumbuh State Agricultural Polytechnic Screenhouse from September to November 2024 using a non-factorial Completely Randomized Design (CRD) with five treatments and five replications. The treatment of storage duration of biological organic fertilizer includes: T1 = 0 days storage time, T2 = 7 days storage time, T3 = 14 days storage time, 21 days storage time, and 28 days storage time. The results showed that the best storage length for bacterial viability was from 0 to 14 days after fermentation with a bacterial population of 1.0,107-3.3,107 CFU/ml and a fungal population of <10-1.4,102 CFU/ml. Seven potential and multifunctional bacterial isolates were found, B. altitudinis, Bacillus cf. zanthoxylli, Bacillus cereus, Pseudomonas aeruginosa, Pseufomonas. flexibilis, Pseudomonas cf. pharmacofabricae, and Ectopseudomonas mendocina. All bacterial isolates were able to produce IAA hormone with concentrations between 0.0039-0.0057 µg/ml. Bacterial species that have high viability in water hyacinth POH are bacteria from the genera Bacillus spp. and Pseudomonas spp.

 

References

Adeleke, I. F., & Oluwaseun, F. M. (2022). Water Hyacinth (Eichornia crassipes) As an Inoculum Carrier for Biofertilizer. Science World, 17(1), 117–123. https://www.ajol.info/index.php/swj/article/view/226532

Allouzi, M. M. A., Allouzi, S. M. A., Keng, Z. X., Supramaniam, C. V., Singh, A., & Chong, S. (2022). Liquid biofertilizers as a sustainable solution for agriculture. Heliyon, 8(12), e12609. https://doi.org/10.1016/j.heliyon.2022.e12609

Arfarita, N., Higuchi, T., & Prayogo, C. (2019). Azotobacter population, soil nitrogen and groundnut growth in mercury-contaminated tailing inoculated with Azotobacter. Journal Of Degraded And Mining Lands Management, 6(4), 1889–1895. https://doi.org/http://dx.doi.org/10.15243/jdmlm.2019.064.1889

Bagyalakshmi, B., Ponmurugan, P., & Balamurugan, A. (2017). Potassium solubilization, plant growth promoting substances by potassium solubilizing bacteria (KSB) from southern Indian Tea plantation soil. Biocatalysis and Agricultural Biotechnology, 12(July), 116–124. https://doi.org/10.1016/j.bcab.2017.09.011

Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R., Tonon, G., & Brusetti, L. (2018). The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, 126(October 2017), 75–84. https://doi.org/10.1016/j.apsoil.2018.02.017

Berninger, T., González López, Ó., Bejarano, A., Preininger, C., & Sessitsch, A. (2018). Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microbial Biotechnology, 11(2), 277–301. https://doi.org/10.1111/1751-7915.12880

Bhattacharyya, A., Mavrodi, O., Bhowmik, N., Weller, D., Thomashow, L., & Mavrodi, D. (2023). Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. Methods in Microbiology, 53, 3–48. https://doi.org/10.1016/bs.mim.2023.05.006

Cabello-Olmo, M., Oneca, M., Torre, P., Díaz, J. V., Encio, I. J., Barajas, M., & Araña, M. (2020). Influence of storage temperature and packaging on bacteria and yeast viability in a plant-based fermented food. Foods, 9(3). https://doi.org/10.3390/foods9030302

Castiglione, A. M., Mannino, G., Contartese, V., Bertea, C. M., & Ertani, A. (2021). Microbial biostimulants as response to modern agriculture needs: Composition, role and application of these innovative products. Plants, 10(8). https://doi.org/10.3390/plants10081533

Dash, N., Pahari, A., & Danger. (2017). Techniques and perspectives Recent Advances in Applied Microbiologyx. In Techniques and perspectives Recent Advances in Applied Microbiology. Springer Nature Singapure Pte Ltd. 2017P. Shukla. https://doi.org/Techniques and perspectives Recent Advances in Applied Microbiology

Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects - a review. Journal of Soil Science and Plant Nutrition, 17(4), 897–911. https://doi.org/10.4067/S0718-95162017000400005

Handayani, K., & Amin, M. (2024). Identifikasi Bakteri Pelarut Kalium Indigenus Asal Perkebunan Nanas. Jurnal Ilmu Pertanian Indonesia, 29(1), 47–53. https://doi.org/10.18343/jipi.29.1.47

Hidayati, N., Hamim, & Mubarik, N. R. (2017). Aplikasi Pupuk Hayati (Plant Growth Promoting Rhizobacteria) yang telah disimpan terhadap Pertumbuhan Tanaman Jagung Var. Bisma. Maduranch, 2(1), 13–22. https://doi.org/http://dx.doi.org/10.53712/maduranch.v2i1.50

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science, 8(September), 1–19. https://doi.org/10.3389/fpls.2017.01617

Kumawat, N., Kumar, R., Kumar, S., & Meena, V. S. (2017). Agriculturally Important Microbes for Sustainable Agriculture. In Agriculturally Important Microbes for Sustainable Agriculture (Vol. 2, Issue September 2016, pp. 25–61). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-10-5343-6

Liu, X., Mei, S., & Salles, J. F. (2023). Inoculated microbial consortia perform better than single strains in living soil: A meta-analysis. Applied Soil Ecology, 190(June). https://doi.org/10.1016/j.apsoil.2023.105011

Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24(4), 3315–3335. https://doi.org/10.1007/s11356-016-8104-0

Ngampimol, H., & Kunathigan, V. (2008). The Study of Shelf Life for Liquid Biofertilizer from Vegetable Waste. Assumption University Journal of Technology, 11(4), 204–208.

Nursanti, I. (2017). Teknologi Produksi Dan Aplikasi Mikroba Pelarut Hara Sebagai Pupuk Hayati. Jurnal Media Pertanian, 2(1), 24. https://doi.org/10.33087/jagro.v2i1.24

Prajapati, K. B., & Modi, H. A. (2012). Isolation and Characterization of Potassium Solubilizing Bacteria From Ceramic Industry Soil. CIBTech Journal of Microbiology, 1(2–3), 8–14. http://www.cibtech.org/cjm.htm

Saraswati, R., Prihatini, T., & Hastuti, R. (2004). Teknologi pupuk mikroba untuk meningkatkan efisiensi pemupukan dan keberlanjutan sistem produksi padi sawah. Dalam Fahmuddin et al. (Eds) Tanah sawah dan teknologi pengelolaannya. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat.

Sarikhani, M. R., Khoshru, B., & Greiner, R. (2019). Isolation and identification of temperature tolerant phosphate solubilizing bacteria as a potential microbial fertilizer. World Journal of Microbiology and Biotechnology, 35(8), 1–10. https://doi.org/10.1007/s11274-019-2702-1

Setiaji, A., Annisa, R. R. R., & Rahmandhias, D. T. (2023). Bakteri Bacillus Sebagai Agen Kontrol Hayati dan Biostimulan Tanaman. Rekayasa, 16(1), 96–106. https://doi.org/10.21107/rekayasa.v16i1.17207

Sondang, Y., Anty, K., & Siregar, R. (2020a). Pengaruh media pembawa pupuk hayati bakteri pelarut fosfat terhadap keberadaan bakteri endogen dan bakteri rhizosfer tanaman jagung. . . Prosiding Seminar Nasional “Sistem Pertanian Terpadu Dalam Pemberdayaan Petani” 24 September 2020, 183–193.

Sondang, Y., Anty, K., & Siregar, R. (2020b). Potensi Konsorsium Bakteri Pemacu Pertumbuhan Sebagai Bahan Aktif Pupuk Organik Hayati Pada Tanaman Jagung. Agritech: Jurnal Fakultas Pertanian Universitas Muhammadiyah Purwokerto, 22(2), 110. https://doi.org/10.30595/agritech.v22i2.8891

Sondang, Y., Anty, K., & Siregar, R. . (2019). Indentification of endophytic and rhizosphere bacteria in maize (Zea mays L.) in Limapuluh Kota Region, West Sumatra, Indonesia. . . 6 Th International Conference on Sustainable Agriculture, Food and Energy. IOP Conf. Series: Earth and Environmental Science 347 (2019) 012002. https://doi.org/Doi:10.1088/1755-1315/347/1/012002.

Sondang, Y., Muflihayati, Anty, K., & Siregar, R. (2023). The effect of functional bacterial consortium on nutrient content of liquid organic. IOP Conference Series: Earth and Environmental Science, 1160(1). https://doi.org/10.1088/1755-1315/1160/1/012079

Wang, L., & Wu, Z. (2024). Detection and Quantitative Analysis. 13(2954), 1–12. https://doi.org/https://doi.org/10.3390/ foods13182954 Academic

Author Biographies

Yun Sondang, Politeknik Pertanian Negeri Payakumbuh

Trisia Wulantika, Politeknik Pertanian Negeri Payakumbuh

Ramond Siregar, Politeknik Pertanian Negeri Payakumbuh

License

Copyright (c) 2024 Yun Sondang, Trisia Wulantika, Ramond Siregar

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).