Vol. 11 No. 5 (2025): May
Open Access
Peer Reviewed

Identification of Phenolic Compounds Content in Tinospora crispa Stem Decoction by FTIR and UV-Visible Spectrophotometry

Authors

DOI:

10.29303/jppipa.v11i5.10069

Published:

2025-05-25

Downloads

Abstract

Phenolics are compounds that have a hydroxyl (OH) group attached to an aromatic ring, and are known for various health benefits such as antioxidant, antimicrobial, and anti-inflammatory properties. This study aims to measure the total phenolic content and characterize the functional groups in Tinospora crispa stem extract using a decoction method, as well as evaluate its potential as a source of bioactive compounds. Extraction was performed by boiling dried Tinospora crispa stems in water. Total phenolic content was quantified using UV-Vis spectrophotometry (λ = 765 nm) via the Folin-Ciocalteu reaction, with a gallic acid calibration curve (R² = 0.998). Functional group analysis was conducted using FTIR (4000–400 cm⁻¹). The extract showed high phenolic content (384.909 mg GAE/g), supported by the identification of characteristic functional groups such as O-H (3255.55 cm⁻¹), C=C (2121.59 cm⁻¹), and C-O (1261.45 cm⁻¹) in the FTIR spectrum. These groups are associated with the presence of bioactive compounds such as phenolics. Therefore, Tinospora crispa has potential as a source of phenolic compounds, one of which can be obtained using the decoction method.

Keywords:

Decoction FTIR Phenolic Tinospora crispa UV-Vis

References

Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nature Protocols, 2(4), 875-877. https://doi.org/10.1038/nprot.2007.102

AP, P., Murugan, K., V, V., & AP, L. (2023). Comparison of UV-Visible Spectrophotometric and FTIR Analysis of Tinospora Crispa (L.) Hook. F. and Thomson Leaves and Stem. Acta Scientific Veterinary Sciences, 5(4), 12-16. https://doi.org/10.31080/asvs.2023.05.0644

Apriandanu, D. O., & Yulizar, Y. (2017). The Role of Aqueous Leaf Extract of Tinospora crispa as Reducing and Capping Agents for Synthesis of Gold Nanoparticles. IOP Conference Series: Materials Science and Engineering, 188, 012013. https://doi.org/10.1088/1757-899x/188/1/012013

Aryasa, I. W., & Sugianta, I. K. (2023). In Silico Study of Derivative Compounds of Galangal Plants as Anti-Inflammatory. Jurnal Penelitian Pendidikan IPA, 9(8), 6531-6539. https://doi.org/10.29303/jppipa.v9i8.3042

Bastola, K. P., Guragain, Y. N., Bhadriraju, V., & Vadlani, P. V. (2017). Evaluation of Standards and Interfering Compounds in the Determination of Phenolics by Folin-Ciocalteu Assay Method for Effective Bioprocessing of Biomass. American Journal of Analytical Chemistry, 08(06), 416-431. https://doi.org/10.4236/ajac.2017.86032

Castellanos-Jiménez, A. K., Reynoso-Camacho, R., Rocha-Guzmán, N. E., Corella-Madueño, M. A., Ríos, E. A. D. L., & Salgado, L. M. (2022). Effect of Herbal Decoctions Used in Mexican Traditional Medicine Attenuate the Adverse Effects of a Hypercaloric Diet. Phytomedicine Plus, 2(1), 100213. https://doi.org/10.1016/j.phyplu.2021.100213

Chroho, M., Bouymajane, A., Majdoub, Y. O. E., Cacciola, F., Mondello, L., Aazza, M., Zair, T., & Bouissane, L. (2022). Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa damascena from Morocco. Separations, 9(9), 247. https://doi.org/10.3390/separations9090247

Costa, R. A., Pinheiro, M. L., Oliveira, K. M., Barison, A., Salomé, K. S., Iank, J. R., Silva, N. G. D., Cabral, T. S., & Costa, E. V. (2016). Structural, Vibrational, and Electronic Properties of the Glucoalkaloid Strictosidine: A Combined Experimental and Theoretical Study. Journal of Chemistry, 2016, 1-16. https://doi.org/10.1155/2016/1752429

Dai, F., Zhuang, Q., Huang, G., Deng, H., & Zhang, X. (2023). Infrared Spectrum Characteristics and Quantification of OH Groups in Coal. ACS Omega, 8(19), 17064-17076. https://doi.org/10.1021/acsomega.3c01336

Delgado, R. (2022). Misuse of Beer–Lambert Law and Other Calibration Curves. Royal Society Open Science, 9(2). https://doi.org/10.1098/rsos.211103

Haque, E., Bari, M. S., Khandokar, L., Anjum, J., Jantan, I., Seidel, V., & Haque, M. A. (2022). An Updated and Comprehensive Review on the Ethnomedicinal Uses, Phytochemistry, Pharmacological Activity and Toxicological Profile of Tinospora crispa (L.) Hook. F. & Thomson. Phytochemistry Reviews, 22(1), 211-273. https://doi.org/10.1007/s11101-022-09843-y

Hidayat, R., & Wulandari, P. (2021). Methods of Extraction: Maceration, Percolation and Decoction. Eureka Herba Indonesia, 2(1), 73-79. https://doi.org/10.37275/ehi.v2i1.15

Ibrahim, M. J., Wan-Nor Izzah, W. M., & Narimah, A. H. (2011). Anti-Proliperative and Antioxidant Effects of Tinospora crispa (Batawali). Biomedical Research, 22(1), 57-62. Retrieved from https://www.researchgate.net/publication/261879595

Ismail, I, I., Irawan, C., Sukiman, M., Putri, I. D., Utami, A., Zalni, M. I., & Putri, R. K. (2022). Optimization of Ultrasound-Assisted Extraction of Andrographis paniculata Nees Leaves, Phytochemical Screening, Total Phenolic Content and Anti-Gout Potential Activity. Pharmacognosy Journal, 14(2), 432-438. https://doi.org/10.5530/pj.2022.14.55

Joshi, R., Sathasivam, R., Park, S. U., Lee, H., Kim, M. S., Baek, I., & Cho, B. (2021). Application of Fourier Transform Infrared Spectroscopy and Multivariate Analysis Methods for the Non-Destructive Evaluation of Phenolics Compounds in Moringa Powder. Agriculture, 12(1), 10. https://doi.org/10.3390/agriculture12010010

Kamacı, M., & Kaya, İ. (2014). Synthesis, Thermal and Morphological Properties of Polyurethanes Containing Azomethine Linkage. Journal of Inorganic and Organometallic Polymers and Materials, 24(5), 803-818. https://doi.org/10.1007/s10904-014-0046-8

Karpagasundari, C., & Kulothungan, S. (2014). Analysis of Bioactive Compounds in Physalis Minima Leaves Using GC MS, HPLC, UV-VIS and FTIR Techniques. Journal of Pharmacognosy and Phytochemistry, 3(4), 196-201. Retrieved from https://www.phytojournal.com/archives/2014.v3.i4.435/analysis-of-bioactive-compounds-in-physalis-minima-leaves-using-gc-ms-hplc-uv-vis-and-ftir-techniques

Li, S., Lai, S., Song, J., Qiao, C., Liu, X., Zhou, Y., Cai, H., Cai, B., & Xu, H. (2010). Decocting-Induced Chemical Transformations and Global Quality of Du–Shen–Tang, the Decoction of Ginseng Evaluated by UPLC–Q-TOF-MS/MS Based Chemical Profiling Approach. Journal of Pharmaceutical and Biomedical Analysis, 53(4), 946-957. https://doi.org/10.1016/j.jpba.2010.07.001

Llamasares-Castillo, A., Uclusin-Bolibol, R., Rojsitthisak, P., & Alcantara, K. P. (2024). In Vitro and In Vivo Studies of the Therapeutic Potential of Tinospora crispa Extracts in Osteoarthritis: Targeting Oxidation, Inflammation, and Chondroprotection. Journal of Ethnopharmacology, 333, 118446. https://doi.org/10.1016/j.jep.2024.118446

McMurry, J. (2023). Organic Chemistry. Houston, Texas: OpenStax. Retrieved from https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter

Meena, R., & Johri, A. (2023). Identification and Comparison of Biomolecules in Medicinal Plant Oxystelma esculentum R. BR. by Using FTIR. International Journal of Green and Herbal Chemistry, 12(1). https://doi.org/10.24214/ijghc/gc/12/1/06570

Nguyen, T. P., Bang, L. H., Nguyen, T. T., & Nguyen, T. P. (2020). Bioactive Compounds Analysis and Antioxidant Activities of Tinospora crispa MIERS Stem Extract. The Scientific Journal of Tra Vinh University, 1(40), 58-69. https://doi.org/10.35382/18594816.1.40.2020.617

Paśko, P., Galanty, A., Dymerski, T., Kim, Y., Park, Y., Cabrales-Arellano, P., & Gorinstein, S. (2024). Physicochemical and Volatile Compounds Analysis of Fruit Wines Fermented with Saccharomyces cerevisiae: FTIR and Microscopy Study with Focus on Anti-Inflammatory Potential. International Journal of Molecular Sciences, 25(11), 5627. https://doi.org/10.3390/ijms25115627

Pérez, M., Dominguez-López, I., & Lamuela-Raventós, R. M. (2023). The Chemistry Behind the Folin–Ciocalteu Method for the Estimation of (Poly)Phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. Journal of Agricultural and Food Chemistry, 71(46), 17543-17553. https://doi.org/10.1021/acs.jafc.3c04022

Rahayu, P. P., Widyastuti, E. S., Nurwahyuni, E., Yunita, C. N., & Hakim, L. (2023). Characterization of Andrographis Paniculata Extract Obtained by Microwave-Assisted Extraction (MAE) Method with Radiation Time. Jurnal Penelitian Pendidikan IPA, 9(12), 11289-11295. https://doi.org/10.29303/jppipa.v9i12.5624

Rahman, M., Rahman, M. H., & Chowdhury, T. A. (2020). Phytochemical and Biological Activity Studies of Tinospora crispa Stem. Dhaka University Journal of Science, 68(2), 167-170. https://doi.org/10.3329/dujs.v68i2.54616

Rai, S., Kafle, A., Devkota, H. P., & Bhattarai, A. (2023). Characterization of Saponins from the Leaves and Stem Bark of Jatropha curcas L. for Surface-Active Properties. Heliyon, 9(5), e15807. https://doi.org/10.1016/j.heliyon.2023.e15807

Rosidah, I., Bahua, H., Mufidah, R., & Pongtuluran, O. B. (2015). Pengaruh Kondisi Proses Ekstraksi Batang Brotowali (Tinospora crispa (L) Hook.f & Thomson) Terhadap Aktivitas Hambatan Enzim Alfa Glukosidase. Media Penelitian dan Pengembangan Kesehatan, 25(4). https://doi.org/10.22435/mpk.v25i4.4586.203-210

RTI laboratories. (2016). Environmental, Chemical & Materials Testing. Retrieved from https://rtilab.com/techniques/ftir-analysis/

Sanpinit, S., Wetchakul, P., Chonsut, P., Prommee, N., Punsawad, C., Han, J., & Net-anong, S. (2023). Evaluation of Chemical Compositions and the Antioxidant and Cytotoxic Properties of the Aqueous Extract of Tri-Yannarose Recipe (Areca catechu, Azadirachta indica, and Tinospora crispa). Antioxidants, 12(7), 1428. https://doi.org/10.3390/antiox12071428

Shah, Z. M., Hasan, M. K., Kadir, K. K., Arshad, M. S., & Amom, Z. (2021). The Effects of Extraction Conditions on Extraction Yield and Syringin Content in Producing Standardized Tinospora crispa Aqueous Extract with High Antioxidant Activity. Asian Food Science Journal, 106-120. https://doi.org/10.9734/afsj/2021/v20i430291

Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). Spectrometric Identification of Organic Compounds. John Wiley & Sons.

Song, F., Gan, R., Zhang, Y., Xiao, Q., Kuang, L., & Li, H. (2010). Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. International Journal of Molecular Sciences, 11(6), 2362-2372. https://doi.org/10.3390/ijms11062362

Sulastri, L., Syamsudin, S., & Simanjuntak, P. (2018). Karakterisasi Senyawa Penghambat Polimerisasi Hemedari Batang Brotowali (Tinospora crispa(L.). Biopropal Industri, 9(2), 79-86. https://doi.org/10.36974/jbi.v9i2.3778

Suparno, S., Lestari, E. S. A., & Grace, D. (2024). Antibacterial Activity of Bajakah Kalalawit Phenolic Against Staphylococcus aureus and Possible Use of Phenolic Nanoparticles. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-70799-4

Susanti, D., Putra, A. D., Safrina, D., Wijaya, N. R., Adi, M. B., Mujahid, R., Rukmana, R. M., Subositi, D., Haryanti, S., Siswanto, U., & Widiyastuti, Y. (2024). Antimalarial Medicinal Plants Used by Traditional Healers in Bengkulu Province of Indonesia. BIOTROPIA, 31(3), 402-421. https://doi.org/10.11598/btb.2024.31.3.2318

Tully, D. (2024). 15.7 Spectroscopy of Aromatic Compounds. In Organic Chemistry: A Tenth Edition – OpenStax Adaptation 1. Retrieved from https://ncstate.pressbooks.pub/organicchem/chapter/spectroscopy-of-aromatic-compounds/

Warsinah, W., Baroroh, H. N., & Harwoko, H. (2020). Phytochemical Analysis and Antioxidant Activity of Brotowali (Tinospora crispa L. Mier) Stem. Molekul, 15(2), 73. https://doi.org/10.20884/1.jm.2020.15.2.533

Zhang, Q., Lin, L., & Ye, W. (2018). Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chinese Medicine, 13(1). https://doi.org/10.1186/s13020-018-0177-x

Zugazua-Ganado, M., Bordagaray, A., Ezenarro, J., Garcia-Arrona, R., Ostra, M., & Vidal, M. (2024). Adaptation of the Folin-Ciocalteu and Fast Blue BB Spectrophotometric Methods to Digital Image Analysis for the Determination of Total Phenolic Content: Reduction of Reaction Time, Interferences and Sample Analysis. LWT, 193, 115756. https://doi.org/10.1016/j.lwt.2024.115756

Author Biographies

Elisabet Sa Wulo, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Yunike Kurnia Unda, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Suparno, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Wulo, E. S., Unda, Y. K., & Suparno. (2025). Identification of Phenolic Compounds Content in Tinospora crispa Stem Decoction by FTIR and UV-Visible Spectrophotometry. Jurnal Penelitian Pendidikan IPA, 11(5), 533–540. https://doi.org/10.29303/jppipa.v11i5.10069