Identification of Phenolic Compounds Content in Tinospora crispa Stem Decoction by FTIR and UV-Visible Spectrophotometry

Authors

DOI:

10.29303/jppipa.v11i5.10069

Published:

2025-05-25

Issue:

Vol. 11 No. 5 (2025): May

Keywords:

Decoction, FTIR, Phenolic, Tinospora crispa, UV-Vis

Research Articles

Downloads

How to Cite

Wulo, E. S., Unda, Y. K., & Suparno. (2025). Identification of Phenolic Compounds Content in Tinospora crispa Stem Decoction by FTIR and UV-Visible Spectrophotometry. Jurnal Penelitian Pendidikan IPA, 11(5), 533–540. https://doi.org/10.29303/jppipa.v11i5.10069

Downloads

Metrics

PDF views
34
May 25 '25May 28 '25May 31 '25Jun 01 '25Jun 04 '25Jun 07 '25Jun 10 '25Jun 13 '25Jun 16 '25Jun 19 '25Jun 22 '255.0
|

Abstract

Phenolics are compounds that have a hydroxyl (OH) group attached to an aromatic ring, and are known for various health benefits such as antioxidant, antimicrobial, and anti-inflammatory properties. This study aims to measure the total phenolic content and characterize the functional groups in Tinospora crispa stem extract using a decoction method, as well as evaluate its potential as a source of bioactive compounds. Extraction was performed by boiling dried Tinospora crispa stems in water. Total phenolic content was quantified using UV-Vis spectrophotometry (λ = 765 nm) via the Folin-Ciocalteu reaction, with a gallic acid calibration curve (R² = 0.998). Functional group analysis was conducted using FTIR (4000–400 cm⁻¹). The extract showed high phenolic content (384.909 mg GAE/g), supported by the identification of characteristic functional groups such as O-H (3255.55 cm⁻¹), C=C (2121.59 cm⁻¹), and C-O (1261.45 cm⁻¹) in the FTIR spectrum. These groups are associated with the presence of bioactive compounds such as phenolics. Therefore, Tinospora crispa has potential as a source of phenolic compounds, one of which can be obtained using the decoction method.

References

Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nature Protocols, 2(4), 875-877. https://doi.org/10.1038/nprot.2007.102

AP, P., Murugan, K., V, V., & AP, L. (2023). Comparison of UV-Visible Spectrophotometric and FTIR Analysis of Tinospora Crispa (L.) Hook. F. and Thomson Leaves and Stem. Acta Scientific Veterinary Sciences, 5(4), 12-16. https://doi.org/10.31080/asvs.2023.05.0644

Apriandanu, D. O., & Yulizar, Y. (2017). The Role of Aqueous Leaf Extract of Tinospora crispa as Reducing and Capping Agents for Synthesis of Gold Nanoparticles. IOP Conference Series: Materials Science and Engineering, 188, 012013. https://doi.org/10.1088/1757-899x/188/1/012013

Aryasa, I. W., & Sugianta, I. K. (2023). In Silico Study of Derivative Compounds of Galangal Plants as Anti-Inflammatory. Jurnal Penelitian Pendidikan IPA, 9(8), 6531-6539. https://doi.org/10.29303/jppipa.v9i8.3042

Bastola, K. P., Guragain, Y. N., Bhadriraju, V., & Vadlani, P. V. (2017). Evaluation of Standards and Interfering Compounds in the Determination of Phenolics by Folin-Ciocalteu Assay Method for Effective Bioprocessing of Biomass. American Journal of Analytical Chemistry, 08(06), 416-431. https://doi.org/10.4236/ajac.2017.86032

Castellanos-Jiménez, A. K., Reynoso-Camacho, R., Rocha-Guzmán, N. E., Corella-Madueño, M. A., Ríos, E. A. D. L., & Salgado, L. M. (2022). Effect of Herbal Decoctions Used in Mexican Traditional Medicine Attenuate the Adverse Effects of a Hypercaloric Diet. Phytomedicine Plus, 2(1), 100213. https://doi.org/10.1016/j.phyplu.2021.100213

Chroho, M., Bouymajane, A., Majdoub, Y. O. E., Cacciola, F., Mondello, L., Aazza, M., Zair, T., & Bouissane, L. (2022). Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa damascena from Morocco. Separations, 9(9), 247. https://doi.org/10.3390/separations9090247

Costa, R. A., Pinheiro, M. L., Oliveira, K. M., Barison, A., Salomé, K. S., Iank, J. R., Silva, N. G. D., Cabral, T. S., & Costa, E. V. (2016). Structural, Vibrational, and Electronic Properties of the Glucoalkaloid Strictosidine: A Combined Experimental and Theoretical Study. Journal of Chemistry, 2016, 1-16. https://doi.org/10.1155/2016/1752429

Dai, F., Zhuang, Q., Huang, G., Deng, H., & Zhang, X. (2023). Infrared Spectrum Characteristics and Quantification of OH Groups in Coal. ACS Omega, 8(19), 17064-17076. https://doi.org/10.1021/acsomega.3c01336

Delgado, R. (2022). Misuse of Beer–Lambert Law and Other Calibration Curves. Royal Society Open Science, 9(2). https://doi.org/10.1098/rsos.211103

Haque, E., Bari, M. S., Khandokar, L., Anjum, J., Jantan, I., Seidel, V., & Haque, M. A. (2022). An Updated and Comprehensive Review on the Ethnomedicinal Uses, Phytochemistry, Pharmacological Activity and Toxicological Profile of Tinospora crispa (L.) Hook. F. & Thomson. Phytochemistry Reviews, 22(1), 211-273. https://doi.org/10.1007/s11101-022-09843-y

Hidayat, R., & Wulandari, P. (2021). Methods of Extraction: Maceration, Percolation and Decoction. Eureka Herba Indonesia, 2(1), 73-79. https://doi.org/10.37275/ehi.v2i1.15

Ibrahim, M. J., Wan-Nor Izzah, W. M., & Narimah, A. H. (2011). Anti-Proliperative and Antioxidant Effects of Tinospora crispa (Batawali). Biomedical Research, 22(1), 57-62. Retrieved from https://www.researchgate.net/publication/261879595

Ismail, I, I., Irawan, C., Sukiman, M., Putri, I. D., Utami, A., Zalni, M. I., & Putri, R. K. (2022). Optimization of Ultrasound-Assisted Extraction of Andrographis paniculata Nees Leaves, Phytochemical Screening, Total Phenolic Content and Anti-Gout Potential Activity. Pharmacognosy Journal, 14(2), 432-438. https://doi.org/10.5530/pj.2022.14.55

Joshi, R., Sathasivam, R., Park, S. U., Lee, H., Kim, M. S., Baek, I., & Cho, B. (2021). Application of Fourier Transform Infrared Spectroscopy and Multivariate Analysis Methods for the Non-Destructive Evaluation of Phenolics Compounds in Moringa Powder. Agriculture, 12(1), 10. https://doi.org/10.3390/agriculture12010010

Kamacı, M., & Kaya, İ. (2014). Synthesis, Thermal and Morphological Properties of Polyurethanes Containing Azomethine Linkage. Journal of Inorganic and Organometallic Polymers and Materials, 24(5), 803-818. https://doi.org/10.1007/s10904-014-0046-8

Karpagasundari, C., & Kulothungan, S. (2014). Analysis of Bioactive Compounds in Physalis Minima Leaves Using GC MS, HPLC, UV-VIS and FTIR Techniques. Journal of Pharmacognosy and Phytochemistry, 3(4), 196-201. Retrieved from https://www.phytojournal.com/archives/2014.v3.i4.435/analysis-of-bioactive-compounds-in-physalis-minima-leaves-using-gc-ms-hplc-uv-vis-and-ftir-techniques

Li, S., Lai, S., Song, J., Qiao, C., Liu, X., Zhou, Y., Cai, H., Cai, B., & Xu, H. (2010). Decocting-Induced Chemical Transformations and Global Quality of Du–Shen–Tang, the Decoction of Ginseng Evaluated by UPLC–Q-TOF-MS/MS Based Chemical Profiling Approach. Journal of Pharmaceutical and Biomedical Analysis, 53(4), 946-957. https://doi.org/10.1016/j.jpba.2010.07.001

Llamasares-Castillo, A., Uclusin-Bolibol, R., Rojsitthisak, P., & Alcantara, K. P. (2024). In Vitro and In Vivo Studies of the Therapeutic Potential of Tinospora crispa Extracts in Osteoarthritis: Targeting Oxidation, Inflammation, and Chondroprotection. Journal of Ethnopharmacology, 333, 118446. https://doi.org/10.1016/j.jep.2024.118446

McMurry, J. (2023). Organic Chemistry. Houston, Texas: OpenStax. Retrieved from https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter

Meena, R., & Johri, A. (2023). Identification and Comparison of Biomolecules in Medicinal Plant Oxystelma esculentum R. BR. by Using FTIR. International Journal of Green and Herbal Chemistry, 12(1). https://doi.org/10.24214/ijghc/gc/12/1/06570

Nguyen, T. P., Bang, L. H., Nguyen, T. T., & Nguyen, T. P. (2020). Bioactive Compounds Analysis and Antioxidant Activities of Tinospora crispa MIERS Stem Extract. The Scientific Journal of Tra Vinh University, 1(40), 58-69. https://doi.org/10.35382/18594816.1.40.2020.617

Paśko, P., Galanty, A., Dymerski, T., Kim, Y., Park, Y., Cabrales-Arellano, P., & Gorinstein, S. (2024). Physicochemical and Volatile Compounds Analysis of Fruit Wines Fermented with Saccharomyces cerevisiae: FTIR and Microscopy Study with Focus on Anti-Inflammatory Potential. International Journal of Molecular Sciences, 25(11), 5627. https://doi.org/10.3390/ijms25115627

Pérez, M., Dominguez-López, I., & Lamuela-Raventós, R. M. (2023). The Chemistry Behind the Folin–Ciocalteu Method for the Estimation of (Poly)Phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. Journal of Agricultural and Food Chemistry, 71(46), 17543-17553. https://doi.org/10.1021/acs.jafc.3c04022

Rahayu, P. P., Widyastuti, E. S., Nurwahyuni, E., Yunita, C. N., & Hakim, L. (2023). Characterization of Andrographis Paniculata Extract Obtained by Microwave-Assisted Extraction (MAE) Method with Radiation Time. Jurnal Penelitian Pendidikan IPA, 9(12), 11289-11295. https://doi.org/10.29303/jppipa.v9i12.5624

Rahman, M., Rahman, M. H., & Chowdhury, T. A. (2020). Phytochemical and Biological Activity Studies of Tinospora crispa Stem. Dhaka University Journal of Science, 68(2), 167-170. https://doi.org/10.3329/dujs.v68i2.54616

Rai, S., Kafle, A., Devkota, H. P., & Bhattarai, A. (2023). Characterization of Saponins from the Leaves and Stem Bark of Jatropha curcas L. for Surface-Active Properties. Heliyon, 9(5), e15807. https://doi.org/10.1016/j.heliyon.2023.e15807

Rosidah, I., Bahua, H., Mufidah, R., & Pongtuluran, O. B. (2015). Pengaruh Kondisi Proses Ekstraksi Batang Brotowali (Tinospora crispa (L) Hook.f & Thomson) Terhadap Aktivitas Hambatan Enzim Alfa Glukosidase. Media Penelitian dan Pengembangan Kesehatan, 25(4). https://doi.org/10.22435/mpk.v25i4.4586.203-210

RTI laboratories. (2016). Environmental, Chemical & Materials Testing. Retrieved from https://rtilab.com/techniques/ftir-analysis/

Sanpinit, S., Wetchakul, P., Chonsut, P., Prommee, N., Punsawad, C., Han, J., & Net-anong, S. (2023). Evaluation of Chemical Compositions and the Antioxidant and Cytotoxic Properties of the Aqueous Extract of Tri-Yannarose Recipe (Areca catechu, Azadirachta indica, and Tinospora crispa). Antioxidants, 12(7), 1428. https://doi.org/10.3390/antiox12071428

Shah, Z. M., Hasan, M. K., Kadir, K. K., Arshad, M. S., & Amom, Z. (2021). The Effects of Extraction Conditions on Extraction Yield and Syringin Content in Producing Standardized Tinospora crispa Aqueous Extract with High Antioxidant Activity. Asian Food Science Journal, 106-120. https://doi.org/10.9734/afsj/2021/v20i430291

Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). Spectrometric Identification of Organic Compounds. John Wiley & Sons.

Song, F., Gan, R., Zhang, Y., Xiao, Q., Kuang, L., & Li, H. (2010). Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. International Journal of Molecular Sciences, 11(6), 2362-2372. https://doi.org/10.3390/ijms11062362

Sulastri, L., Syamsudin, S., & Simanjuntak, P. (2018). Karakterisasi Senyawa Penghambat Polimerisasi Hemedari Batang Brotowali (Tinospora crispa(L.). Biopropal Industri, 9(2), 79-86. https://doi.org/10.36974/jbi.v9i2.3778

Suparno, S., Lestari, E. S. A., & Grace, D. (2024). Antibacterial Activity of Bajakah Kalalawit Phenolic Against Staphylococcus aureus and Possible Use of Phenolic Nanoparticles. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-70799-4

Susanti, D., Putra, A. D., Safrina, D., Wijaya, N. R., Adi, M. B., Mujahid, R., Rukmana, R. M., Subositi, D., Haryanti, S., Siswanto, U., & Widiyastuti, Y. (2024). Antimalarial Medicinal Plants Used by Traditional Healers in Bengkulu Province of Indonesia. BIOTROPIA, 31(3), 402-421. https://doi.org/10.11598/btb.2024.31.3.2318

Tully, D. (2024). 15.7 Spectroscopy of Aromatic Compounds. In Organic Chemistry: A Tenth Edition – OpenStax Adaptation 1. Retrieved from https://ncstate.pressbooks.pub/organicchem/chapter/spectroscopy-of-aromatic-compounds/

Warsinah, W., Baroroh, H. N., & Harwoko, H. (2020). Phytochemical Analysis and Antioxidant Activity of Brotowali (Tinospora crispa L. Mier) Stem. Molekul, 15(2), 73. https://doi.org/10.20884/1.jm.2020.15.2.533

Zhang, Q., Lin, L., & Ye, W. (2018). Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chinese Medicine, 13(1). https://doi.org/10.1186/s13020-018-0177-x

Zugazua-Ganado, M., Bordagaray, A., Ezenarro, J., Garcia-Arrona, R., Ostra, M., & Vidal, M. (2024). Adaptation of the Folin-Ciocalteu and Fast Blue BB Spectrophotometric Methods to Digital Image Analysis for the Determination of Total Phenolic Content: Reduction of Reaction Time, Interferences and Sample Analysis. LWT, 193, 115756. https://doi.org/10.1016/j.lwt.2024.115756

Author Biographies

Elisabet Sa Wulo, Universitas Negeri Yogyakarta

Yunike Kurnia Unda, Universitas Negeri Yogyakarta

Suparno, Universitas Negeri Yogyakarta

License

Copyright (c) 2025 Elisabet Sa Wulo, Yunike Kurnia Unda, Suparno

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).