Identification of Phenolic Compounds Content in Tinospora crispa Stem Decoction by FTIR and UV-Visible Spectrophotometry
DOI:
10.29303/jppipa.v11i5.10069Published:
2025-05-25Issue:
Vol. 11 No. 5 (2025): MayKeywords:
Decoction, FTIR, Phenolic, Tinospora crispa, UV-VisResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Phenolics are compounds that have a hydroxyl (OH) group attached to an aromatic ring, and are known for various health benefits such as antioxidant, antimicrobial, and anti-inflammatory properties. This study aims to measure the total phenolic content and characterize the functional groups in Tinospora crispa stem extract using a decoction method, as well as evaluate its potential as a source of bioactive compounds. Extraction was performed by boiling dried Tinospora crispa stems in water. Total phenolic content was quantified using UV-Vis spectrophotometry (λ = 765 nm) via the Folin-Ciocalteu reaction, with a gallic acid calibration curve (R² = 0.998). Functional group analysis was conducted using FTIR (4000–400 cm⁻¹). The extract showed high phenolic content (384.909 mg GAE/g), supported by the identification of characteristic functional groups such as O-H (3255.55 cm⁻¹), C=C (2121.59 cm⁻¹), and C-O (1261.45 cm⁻¹) in the FTIR spectrum. These groups are associated with the presence of bioactive compounds such as phenolics. Therefore, Tinospora crispa has potential as a source of phenolic compounds, one of which can be obtained using the decoction method.
References
Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nature Protocols, 2(4), 875-877. https://doi.org/10.1038/nprot.2007.102
AP, P., Murugan, K., V, V., & AP, L. (2023). Comparison of UV-Visible Spectrophotometric and FTIR Analysis of Tinospora Crispa (L.) Hook. F. and Thomson Leaves and Stem. Acta Scientific Veterinary Sciences, 5(4), 12-16. https://doi.org/10.31080/asvs.2023.05.0644
Apriandanu, D. O., & Yulizar, Y. (2017). The Role of Aqueous Leaf Extract of Tinospora crispa as Reducing and Capping Agents for Synthesis of Gold Nanoparticles. IOP Conference Series: Materials Science and Engineering, 188, 012013. https://doi.org/10.1088/1757-899x/188/1/012013
Aryasa, I. W., & Sugianta, I. K. (2023). In Silico Study of Derivative Compounds of Galangal Plants as Anti-Inflammatory. Jurnal Penelitian Pendidikan IPA, 9(8), 6531-6539. https://doi.org/10.29303/jppipa.v9i8.3042
Bastola, K. P., Guragain, Y. N., Bhadriraju, V., & Vadlani, P. V. (2017). Evaluation of Standards and Interfering Compounds in the Determination of Phenolics by Folin-Ciocalteu Assay Method for Effective Bioprocessing of Biomass. American Journal of Analytical Chemistry, 08(06), 416-431. https://doi.org/10.4236/ajac.2017.86032
Castellanos-Jiménez, A. K., Reynoso-Camacho, R., Rocha-Guzmán, N. E., Corella-Madueño, M. A., Ríos, E. A. D. L., & Salgado, L. M. (2022). Effect of Herbal Decoctions Used in Mexican Traditional Medicine Attenuate the Adverse Effects of a Hypercaloric Diet. Phytomedicine Plus, 2(1), 100213. https://doi.org/10.1016/j.phyplu.2021.100213
Chroho, M., Bouymajane, A., Majdoub, Y. O. E., Cacciola, F., Mondello, L., Aazza, M., Zair, T., & Bouissane, L. (2022). Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa damascena from Morocco. Separations, 9(9), 247. https://doi.org/10.3390/separations9090247
Costa, R. A., Pinheiro, M. L., Oliveira, K. M., Barison, A., Salomé, K. S., Iank, J. R., Silva, N. G. D., Cabral, T. S., & Costa, E. V. (2016). Structural, Vibrational, and Electronic Properties of the Glucoalkaloid Strictosidine: A Combined Experimental and Theoretical Study. Journal of Chemistry, 2016, 1-16. https://doi.org/10.1155/2016/1752429
Dai, F., Zhuang, Q., Huang, G., Deng, H., & Zhang, X. (2023). Infrared Spectrum Characteristics and Quantification of OH Groups in Coal. ACS Omega, 8(19), 17064-17076. https://doi.org/10.1021/acsomega.3c01336
Delgado, R. (2022). Misuse of Beer–Lambert Law and Other Calibration Curves. Royal Society Open Science, 9(2). https://doi.org/10.1098/rsos.211103
Haque, E., Bari, M. S., Khandokar, L., Anjum, J., Jantan, I., Seidel, V., & Haque, M. A. (2022). An Updated and Comprehensive Review on the Ethnomedicinal Uses, Phytochemistry, Pharmacological Activity and Toxicological Profile of Tinospora crispa (L.) Hook. F. & Thomson. Phytochemistry Reviews, 22(1), 211-273. https://doi.org/10.1007/s11101-022-09843-y
Hidayat, R., & Wulandari, P. (2021). Methods of Extraction: Maceration, Percolation and Decoction. Eureka Herba Indonesia, 2(1), 73-79. https://doi.org/10.37275/ehi.v2i1.15
Ibrahim, M. J., Wan-Nor Izzah, W. M., & Narimah, A. H. (2011). Anti-Proliperative and Antioxidant Effects of Tinospora crispa (Batawali). Biomedical Research, 22(1), 57-62. Retrieved from https://www.researchgate.net/publication/261879595
Ismail, I, I., Irawan, C., Sukiman, M., Putri, I. D., Utami, A., Zalni, M. I., & Putri, R. K. (2022). Optimization of Ultrasound-Assisted Extraction of Andrographis paniculata Nees Leaves, Phytochemical Screening, Total Phenolic Content and Anti-Gout Potential Activity. Pharmacognosy Journal, 14(2), 432-438. https://doi.org/10.5530/pj.2022.14.55
Joshi, R., Sathasivam, R., Park, S. U., Lee, H., Kim, M. S., Baek, I., & Cho, B. (2021). Application of Fourier Transform Infrared Spectroscopy and Multivariate Analysis Methods for the Non-Destructive Evaluation of Phenolics Compounds in Moringa Powder. Agriculture, 12(1), 10. https://doi.org/10.3390/agriculture12010010
Kamacı, M., & Kaya, İ. (2014). Synthesis, Thermal and Morphological Properties of Polyurethanes Containing Azomethine Linkage. Journal of Inorganic and Organometallic Polymers and Materials, 24(5), 803-818. https://doi.org/10.1007/s10904-014-0046-8
Karpagasundari, C., & Kulothungan, S. (2014). Analysis of Bioactive Compounds in Physalis Minima Leaves Using GC MS, HPLC, UV-VIS and FTIR Techniques. Journal of Pharmacognosy and Phytochemistry, 3(4), 196-201. Retrieved from https://www.phytojournal.com/archives/2014.v3.i4.435/analysis-of-bioactive-compounds-in-physalis-minima-leaves-using-gc-ms-hplc-uv-vis-and-ftir-techniques
Li, S., Lai, S., Song, J., Qiao, C., Liu, X., Zhou, Y., Cai, H., Cai, B., & Xu, H. (2010). Decocting-Induced Chemical Transformations and Global Quality of Du–Shen–Tang, the Decoction of Ginseng Evaluated by UPLC–Q-TOF-MS/MS Based Chemical Profiling Approach. Journal of Pharmaceutical and Biomedical Analysis, 53(4), 946-957. https://doi.org/10.1016/j.jpba.2010.07.001
Llamasares-Castillo, A., Uclusin-Bolibol, R., Rojsitthisak, P., & Alcantara, K. P. (2024). In Vitro and In Vivo Studies of the Therapeutic Potential of Tinospora crispa Extracts in Osteoarthritis: Targeting Oxidation, Inflammation, and Chondroprotection. Journal of Ethnopharmacology, 333, 118446. https://doi.org/10.1016/j.jep.2024.118446
McMurry, J. (2023). Organic Chemistry. Houston, Texas: OpenStax. Retrieved from https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Meena, R., & Johri, A. (2023). Identification and Comparison of Biomolecules in Medicinal Plant Oxystelma esculentum R. BR. by Using FTIR. International Journal of Green and Herbal Chemistry, 12(1). https://doi.org/10.24214/ijghc/gc/12/1/06570
Nguyen, T. P., Bang, L. H., Nguyen, T. T., & Nguyen, T. P. (2020). Bioactive Compounds Analysis and Antioxidant Activities of Tinospora crispa MIERS Stem Extract. The Scientific Journal of Tra Vinh University, 1(40), 58-69. https://doi.org/10.35382/18594816.1.40.2020.617
Paśko, P., Galanty, A., Dymerski, T., Kim, Y., Park, Y., Cabrales-Arellano, P., & Gorinstein, S. (2024). Physicochemical and Volatile Compounds Analysis of Fruit Wines Fermented with Saccharomyces cerevisiae: FTIR and Microscopy Study with Focus on Anti-Inflammatory Potential. International Journal of Molecular Sciences, 25(11), 5627. https://doi.org/10.3390/ijms25115627
Pérez, M., Dominguez-López, I., & Lamuela-Raventós, R. M. (2023). The Chemistry Behind the Folin–Ciocalteu Method for the Estimation of (Poly)Phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. Journal of Agricultural and Food Chemistry, 71(46), 17543-17553. https://doi.org/10.1021/acs.jafc.3c04022
Rahayu, P. P., Widyastuti, E. S., Nurwahyuni, E., Yunita, C. N., & Hakim, L. (2023). Characterization of Andrographis Paniculata Extract Obtained by Microwave-Assisted Extraction (MAE) Method with Radiation Time. Jurnal Penelitian Pendidikan IPA, 9(12), 11289-11295. https://doi.org/10.29303/jppipa.v9i12.5624
Rahman, M., Rahman, M. H., & Chowdhury, T. A. (2020). Phytochemical and Biological Activity Studies of Tinospora crispa Stem. Dhaka University Journal of Science, 68(2), 167-170. https://doi.org/10.3329/dujs.v68i2.54616
Rai, S., Kafle, A., Devkota, H. P., & Bhattarai, A. (2023). Characterization of Saponins from the Leaves and Stem Bark of Jatropha curcas L. for Surface-Active Properties. Heliyon, 9(5), e15807. https://doi.org/10.1016/j.heliyon.2023.e15807
Rosidah, I., Bahua, H., Mufidah, R., & Pongtuluran, O. B. (2015). Pengaruh Kondisi Proses Ekstraksi Batang Brotowali (Tinospora crispa (L) Hook.f & Thomson) Terhadap Aktivitas Hambatan Enzim Alfa Glukosidase. Media Penelitian dan Pengembangan Kesehatan, 25(4). https://doi.org/10.22435/mpk.v25i4.4586.203-210
RTI laboratories. (2016). Environmental, Chemical & Materials Testing. Retrieved from https://rtilab.com/techniques/ftir-analysis/
Sanpinit, S., Wetchakul, P., Chonsut, P., Prommee, N., Punsawad, C., Han, J., & Net-anong, S. (2023). Evaluation of Chemical Compositions and the Antioxidant and Cytotoxic Properties of the Aqueous Extract of Tri-Yannarose Recipe (Areca catechu, Azadirachta indica, and Tinospora crispa). Antioxidants, 12(7), 1428. https://doi.org/10.3390/antiox12071428
Shah, Z. M., Hasan, M. K., Kadir, K. K., Arshad, M. S., & Amom, Z. (2021). The Effects of Extraction Conditions on Extraction Yield and Syringin Content in Producing Standardized Tinospora crispa Aqueous Extract with High Antioxidant Activity. Asian Food Science Journal, 106-120. https://doi.org/10.9734/afsj/2021/v20i430291
Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). Spectrometric Identification of Organic Compounds. John Wiley & Sons.
Song, F., Gan, R., Zhang, Y., Xiao, Q., Kuang, L., & Li, H. (2010). Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. International Journal of Molecular Sciences, 11(6), 2362-2372. https://doi.org/10.3390/ijms11062362
Sulastri, L., Syamsudin, S., & Simanjuntak, P. (2018). Karakterisasi Senyawa Penghambat Polimerisasi Hemedari Batang Brotowali (Tinospora crispa(L.). Biopropal Industri, 9(2), 79-86. https://doi.org/10.36974/jbi.v9i2.3778
Suparno, S., Lestari, E. S. A., & Grace, D. (2024). Antibacterial Activity of Bajakah Kalalawit Phenolic Against Staphylococcus aureus and Possible Use of Phenolic Nanoparticles. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-70799-4
Susanti, D., Putra, A. D., Safrina, D., Wijaya, N. R., Adi, M. B., Mujahid, R., Rukmana, R. M., Subositi, D., Haryanti, S., Siswanto, U., & Widiyastuti, Y. (2024). Antimalarial Medicinal Plants Used by Traditional Healers in Bengkulu Province of Indonesia. BIOTROPIA, 31(3), 402-421. https://doi.org/10.11598/btb.2024.31.3.2318
Tully, D. (2024). 15.7 Spectroscopy of Aromatic Compounds. In Organic Chemistry: A Tenth Edition – OpenStax Adaptation 1. Retrieved from https://ncstate.pressbooks.pub/organicchem/chapter/spectroscopy-of-aromatic-compounds/
Warsinah, W., Baroroh, H. N., & Harwoko, H. (2020). Phytochemical Analysis and Antioxidant Activity of Brotowali (Tinospora crispa L. Mier) Stem. Molekul, 15(2), 73. https://doi.org/10.20884/1.jm.2020.15.2.533
Zhang, Q., Lin, L., & Ye, W. (2018). Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chinese Medicine, 13(1). https://doi.org/10.1186/s13020-018-0177-x
Zugazua-Ganado, M., Bordagaray, A., Ezenarro, J., Garcia-Arrona, R., Ostra, M., & Vidal, M. (2024). Adaptation of the Folin-Ciocalteu and Fast Blue BB Spectrophotometric Methods to Digital Image Analysis for the Determination of Total Phenolic Content: Reduction of Reaction Time, Interferences and Sample Analysis. LWT, 193, 115756. https://doi.org/10.1016/j.lwt.2024.115756
Author Biographies
Elisabet Sa Wulo, Universitas Negeri Yogyakarta
Yunike Kurnia Unda, Universitas Negeri Yogyakarta
Suparno, Universitas Negeri Yogyakarta
License
Copyright (c) 2025 Elisabet Sa Wulo, Yunike Kurnia Unda, Suparno

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).