Synergistic Effect of Phosphorus, Magnesium, and Copper on Phenolic and Flavonoid Production in Paddy Rice
DOI:
10.29303/jppipa.v11i3.10140Published:
2025-03-25Issue:
Vol. 11 No. 3 (2025): MarchKeywords:
Agrominerals, Biosynthesis, Enzymes, Phenylalanine ammonia-lyaseResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Secondary metabolites are crucial for plant resistance to biotic and abiotic stress. Fertilization with phosphorus (P), magnesium (Mg), and copper (Cu) can enhance secondary metabolite production, supporting plant defense mechanisms. This study evaluated the effects of P, Mg, and Cu fertilization on nutrient absorption and the production of phenolic and flavonoid metabolites in Pendok rice during vegetative and generative phases. A randomized block design with seven nutrient treatments and three replications was applied, involving 21 pots in a greenhouse. P was supplied as Super Phosphate Ca(H2PO4) (SP-36) and Phosphate Rock (PR). Mg and Cu treatments included combinations with and without their addition. Results showed that SP-36 with Mg produced the highest phenolic content during the vegetative phase, significantly higher than other treatments with 7.80 mg (GAE).g extract-1. Mg increased phenolic levels, while Mg and P had a significant effect (95% confidence level) on flavonoid and phenolic content during both growth phases. In conclusion, Mg and P fertilization effectively enhanced secondary metabolite production, improving plant resilience through nutrient optimization. These findings emphasize the role of proper nutrient management in boosting secondary metabolite quality in rice cultivation.
References
Ahlawat, Y. K., Singh, M., Manorama, K., Lakra, N., Zaid, A., & Zulfiqar, F. (2023). Plant phenolics: neglected secondary metabolites in plant stress tolerance. Revista Brasileira de Botanica. https://doi.org/10.1007/s40415-023-00949-x
Aksarah, A., Arfan, Bangkele, L. I., Zainal, Fahri, & Mukhlis. (2024). Effect of microbial consortium application on growth and yield of Oryza sativa L. Jurnal Penelitian Pendidikan IPA, 10(7), 3569–3577. https://doi.org/10.29303/jppipa.v10i7.7272
Ali, S., Riaz, A., Mamtaz, S., & Haider, H. (2023). Nutrients and Crop Production. Current Research in Agriculture and Farming, 4(2), 1–15.
Ba, Q., Zhang, L., Chen, S., Li, G., & Wang, W. (2020). Effects of foliar application of magnesium sulfate on photosynthetic characteristics, dry matter accumulation and its translocation, and carbohydrate metabolism in grain during wheat grain filling. Cereal Research Communications, 48(2), 157–163. https://doi.org/10.1007/s42976-020-00026-z
Chi Yu, C., Tung Hung, K., & Huei Kao, C. (2005). Nitric oxide reduces Cu toxicity and Cu-induced NH4+ accumulation in rice leaves. Journal of Plant Physiology, 162(12), 1319–1330. https://doi.org/10.1016/j.jplph.2005.02.003
Cho, H., Bouain, N., Zheng, L., & Rouached, H. (2021). Plant resilience to phosphate limitation: current knowledge and future challenges. Critical Reviews in Biotechnology, 41(1), 63–71. https://doi.org/10.1080/07388551.2020.1825321
Cui, J., & Tcherkez, G. (2021). Potassium dependency of enzymes in plant primary metabolism. Plant Physiology and Biochemistry, 166(June), 522–530. https://doi.org/10.1016/j.plaphy.2021.06.017
Farhat, N., Elkhouni, A., Zorrig, W., Smaoui, A., Abdelly, C., & Rabhi, M. (2016). Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiologiae Plantarum, 38(6). https://doi.org/10.1007/s11738-016-2165-z
Gho, Y. S., Kim, S. jin, & Jung, K. H. (2020). Phenylalanine ammonia-lyase family is closely associated with response to phosphate deficiency in rice. Genes and Genomics, 42(1), 67–76. https://doi.org/10.1007/s13258-019-00879-7
Guo, W., Nazim, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: An urgent problem. Crop Journal, 4(2), 83–91. https://doi.org/10.1016/j.cj.2015.11.003
Hyun, M. W., Yun, Y. H., Kim, J. Y., & Kim, S. H. (2011). Fungal and plant phenylalanine ammonia-lyase. Mycobiology, 39(4), 257–265. https://doi.org/10.5941/MYCO.2011.39.4.257
Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52(1), 39. https://doi.org/10.1186/s40659-019-0246-3
Jannah, M., Hanani, N., Shinta, A., & Wahyuningtyas, H. (2024). Technical Efficiency Analysis of Rice Farming (Case Study). Jurnal Penelitian Pendidikan IPA, 10, 691–700. https://doi.org/10.29303/jppipa.v10iSpecialIssue.7737
Johnson, R., Vishwakarma, K., Hossen, M. S., Kumar, V., Shackira, A. M., Puthur, J. T., Abdi, G., Sarraf, M., & Hasanuzzaman, M. (2022). Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiology and Biochemistry, 172(September), 56–69. https://doi.org/10.1016/j.plaphy.2022.01.001
Khan, F., Siddique, A. B., Shabala, S., Zhou, M., & Zhao, C. (2023). Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants, 12(15). https://doi.org/10.3390/plants12152861
Khare, S., Singh, N. B., Singh, A., Hussain, I., Niharika, K., Yadav, V., Bano, C., Yadav, R. K., & Amist, N. (2020). Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology, 63(3), 203–216. https://doi.org/10.1007/s12374-020-09245-7
Kołton, A., Długosz-Grochowska, O., Wojciechowska, R., & Czaja, M. (2022). Biosynthesis Regulation of Folates and Phenols in Plants. Scientia Horticulturae, 291(August). https://doi.org/10.1016/j.scienta.2021.110561
Kováčik, J., Klejdus, B., Hedbavny, J., & Zoń, J. (2010). Copper uptake is differentially modulated by phenylalanine ammonia-lyase inhibition in diploid and tetraploid chamomile. Journal of Agricultural and Food Chemistry, 58(18), 10270–10276. https://doi.org/10.1021/jf101977v
Kumar, K., Debnath, P., Singh, S., & Kumar, N. (2023). An Overview of Plant Phenolics and Their Involvement in Abiotic Stress Tolerance. Stresses, 3(3), 570–585. https://doi.org/10.3390/stresses3030040
Lambers, H. (2022). Phosphorus Acquisition and Utilization in Plants. Annual Review of Plant Biology, 73, 17–42. https://doi.org/10.1146/annurev-arplant-102720-125738
Macoy, D. M., Kim, W. Y., Lee, S. Y., & Kim, M. G. (2015). Biosynthesis, physiology, and functions of hydroxycinnamic acid amides in plants. Plant Biotechnology Reports, 9(5), 269–278. https://doi.org/10.1007/s11816-015-0368-1
Mou, X. M., Wu, Y., Niu, Z., Jia, B., Guan, Z. H., Chen, J., Li, H., Cui, H., Kuzyakov, Y., & Li, X. G. (2020). Soil phosphorus accumulation changes with decreasing temperature along a 2300 m altitude gradient. Agriculture, Ecosystems and Environment, 301(June). https://doi.org/10.1016/j.agee.2020.107050
Mulyati, M., Sania, A., Priyono, J., Baharuddin, A., & Tejowulani, R. . (2022). Use of Soil Ameliorant And Inorganic Fertilizer to Increase Soil Fertility Phosphorous Concentrations in Plant Tissue, Growth and Yield of Shallot in Dry Land. Jurnal Penelitian Pendidikan IPA, 8(SpecialIssue), 22–29. https://doi.org/10.29303/jppipa.v8ispecialissue.2498
Murnita, M., Desi, Y., & Meriati, M. (2024). Changes in Soil Chemical Properties and Growth of Palm Oil (Elaeis guineensis Jacq) with Comparative Composition of Plant Media. Jurnal Penelitian Pendidikan IPA, 10(4), 1633–1639. https://doi.org/10.29303/jppipa.v10i4.7161
Nicholls, J. W. F., Chin, J. P., Williams, T. A., Lenton, T. M., O’Flaherty, V., & McGrath, J. W. (2023). On the potential roles of phosphorus in the early evolution of energy metabolism. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1239189
Padafani, B. D. B. (2022). Effect of Urea and KCl Fertilization on the Growth and Results of Gogo Rice of Situ Pateggang Variety. Jurnal Penelitian Pendidikan IPA, 8(6), 3159–3164. https://doi.org/10.29303/jppipa.v8i6.2592
Poirier, Y., Jaskolowski, A., & Clúa, J. (2022). Phosphate acquisition and metabolism in plants. Current Biology, 32(12), R623–R629. https://doi.org/10.1016/j.cub.2022.03.073
Printz, B., Lutts, S., Hausman, J. F., & Sergeant, K. (2016). Copper trafficking in plants and its implication on cell wall dynamics. Frontiers in Plant Science, 7(May), 1–16. https://doi.org/10.3389/fpls.2016.00601
Proklamasiningsih, E., Budisantoso, I., & Maula, I. (2019). Pertumbuhan Dan Kandungan Polifenol Tanaman Katuk (Sauropus androgynus (L.) Merr) pada Media Tanam Dengan Pemberian Asam Humat. Al-Kauniyah: Jurnal Biologi, 12(1), 96–102. https://doi.org/10.15408/kauniyah.v12i1.8972
Ratnasari, T., Fanata, W. I. D., Sholikhah, U., & Tanzil, A. I. (2023). Karakterisasi Senyawa Aktif Padi Lokal Indonesia Tahan Terhadap Cekaman Lingkungan. Jurnal Penelitian Pendidikan IPA, 9(SpecialIssue), 1423–1427. https://doi.org/10.29303/jppipa.v9ispecialissue.5644
Rawat, J., Sanwal, P., & Saxena, J. (2016). Potassium and Its Role in Sustainable Agriculture. Potassium and Its Role in Sustainable Agriculture, 1–331. https://doi.org/10.1007/978-81-322-2776-2
Rivaie, A. A. (2015). Influence of SP-36 and Phosphate Rock on Changes in Soil Available P, Leaf P Content, and Growth of Physic Nut (Jatropha curcas L.) in an Ultisol. Journal of Tropical Soils, 19(1), 9. https://doi.org/10.5400/jts.2014.v19i1.9-15
Sardans, J., & Peñuelas, J. (2021). Potassium Control of Plant Functions : Ecological and. Plants, 10(2), 419. https://doi.org/10.3390/plants10020419
Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 1–22. https://doi.org/10.3390/molecules24132452
Son, J., Jang, J. H., Choi, I. H., Lim, C. G., Jeon, E. J., Bae Bang, H., & Jeong, K. J. (2021). Production of trans-cinnamic acid by whole-cell bioconversion from l-phenylalanine in engineered Corynebacterium glutamicum. Microbial Cell Factories, 20(1), 1–12. https://doi.org/10.1186/s12934-021-01631-1
Surya, E., Hakim, L., Fitriyana, L., & Ridhwan, M. (2024). Farmer Behavior in the Use of Pesticides on Rice Plants. Jurnal Penelitian Pendidikan IPA, 10(12), 10020–10028. https://doi.org/10.29303/jppipa.v10i12.7778
Sutrisno, & Yusnawan, E. (2018). Effect of Manure and Inorganic Fertilizers on Vegetative, Generative Characteristics, Nutrient, and Secondary Metabolite Contents of Mungbean. Biosaintifika, 10(1), 56–65. https://doi.org/10.15294/biosaintifika.v10i1.12716
Taqiyyah, A. M., Risjani, Y., Prihanto, A. A., Maulana, G. D., & Karimah, K. (2023). Utilization Of Rice Waste Water on Biomass and Carotenoid Pigment Arthrospira platensis. Jurnal Penelitian Pendidikan IPA, 9(2), 832–837. https://doi.org/10.29303/jppipa.v9i2.2795
Tatagiba, S. D., & Rodrigues, F. A. (2016). Magnesium decreases the symptoms of leaf scald on rice leaves. Tropical Plant Pathology, 41(2), 132–137. https://doi.org/10.1007/s40858-016-0080-x
Tian, X. Y., He, D. D., Bai, S., Zeng, W. Z., Wang, Z., Wang, M., Wu, L. Q., & Chen, Z. C. (2021). Physiological and molecular advances in magnesium nutrition of plants. Plant and Soil, 468(1–2), 1–17. https://doi.org/10.1007/s11104-021-05139-w
Tränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431. https://doi.org/10.1111/ppl.12747
Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., & Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum, 37(7), 1–14. https://doi.org/10.1007/s11738-015-1870-3
Villamarin-Raad, D. A., Lozano-Puentes, H. S., Chitiva, L. C., Costa, G. M., Díaz-Gallo, S. A., & Díaz-Ariza, L. A. (2023). Changes in Phenolic Profile and Total Phenol and Total Flavonoid Contents of Guadua angustifolia Kunth Plants under Organic and Conventional Fertilization. ACS Omega, 8(44), 41223–41231. https://doi.org/10.1021/acsomega.3c04579
Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 1–26. https://doi.org/10.3390/molecules23040762
Yoskader, Waworuntu, J., & Montolalu, I. R. (2023). Effect of Providing Pearl NPK Fertilizer on the Growth and Production of Sweet Corn (Zea mays saccharata Sturt). Jurnal Penelitian Pendidikan IPA, 9(11), 9910–9915. https://doi.org/10.29303/jppipa.v9i11.4857
Zhuang, W. B., Li, Y. H., Shu, X. C., Pu, Y. T., Wang, X. J., Wang, T., & Wang, Z. (2023). The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules, 28(8). https://doi.org/10.3390/molecules28083599
Author Biographies
Tri Candra Setiawati, University of Jember
Vega Kintaghea Rewisa, University of Jember
Desi Febiola, University of Jember
Laily Mutmainah, Sebelas Maret University
Ali Wafa, University of Mataram
Syahrul Efendi, Sebelas Maret University
Lolita Endang Susilowati, University of Mataram
License
Copyright (c) 2025 Tri Candra Setiawati, Vega Kintaghea Rewisa, Desi Febiola, Laily Mutmainah, Ali Wafa, Syahrul Efendi, Lolita Endang Susilowati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).