Increasing Tomato Yield in a Sandy Dryland Through the Application of UV Plastic Shade and Soil Amendment
DOI:
10.29303/jppipa.v11i1.10259Published:
2025-01-24Issue:
Vol. 11 No. 1 (2025): In ProgressKeywords:
Agronomic Management, Chicken Manure, Seaweed Biochar, Soil fertility, UltravioletResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Cultivating tomato plants in dry, sandy soils aims to achieve high yields while enhancing or maintaining soil fertility. This study investigates the effects of soil amendments and ultraviolet (UV) plastic shade on tomato yield and various indicators of soil fertility. The experiment was conducted in the dryland of Gumantar village, North Lombok Regency, Indonesia, during the dry season from May to August 2024. The soil amendment factor included three levels: no soil amendment, chicken manure, and seaweed biochar. Meanwhile, the shading factor consisted of two levels: no shading and shading with UV plastic (200-micron thickness, which transmits 86% of UV light). All treatments received inorganic NPK fertilizer (16-16-16) at a rate of 1,200 kg per hectare. Treatments were arranged factorially using a randomized block design with three replications. Results showed an interaction between soil amendments and shading that affected soil pH, the number of fruits, and fruit weight per plant and plot. The highest fruit weight per plant, recorded at 4.2 kg with 100.7 fruits, was achieved using seaweed biochar and shading. The treatments slightly improved soil fertility indicators, such as soil organic carbon (C-organic), total microbial count, and cation exchange capacity. Applying soil amendment and UV plastic shading can be a sustainable practice for tomato crops production in sandy dryland soils
References
Ahmad Bhat, S., Kuriqi, A., Dar, M. U. D., Bhat, O., Sammen, S. S., Towfiqul Islam, A. R. M., Elbeltagi, A., Shah, O., Ai-Ansari, N., & Ali, R. (2022). Application of biochar for improving physical, chemical, and hydrological soil properties: a systematic review. Sustainability, 14(17), 11104. https://doi.org/10.3390/su141711104
Ahmed, M., Hayat, R., Ahmad, M., Ul-Hassan, M., Kheir, A. M., Ul-Hassan, F., Ur-Rehman, M. H., Shaheen, F. A., Raza, M. A., & Ahmad, S. (2022). Impact of climate change on dryland agricultural systems: a review of current status, potentials, and further work need. International Journal of Plant Production, 16(3), 341-363. https://doi.org/10.1007/s42106-022-00197-1
Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10(3), 531. https://doi.org/https://doi.org/10.3390/plants10030531
Ayankojo, I. T., & Morgan, K. T. (2020). Increasing air temperatures and its effects on growth and productivity of tomato in South Florida. Plants, 9(9), 1245. https://doi.org/10.3390/plants9091245
Bais, A. F., Bernhard, G., McKenzie, R. L., Aucamp, P., Young, P., Ilyas, M., Jöckel, P., & Deushi, M. (2019). Ozone–climate interactions and effects on solar ultraviolet radiation. Photochemical & Photobiological Sciences, 18(3), 602-640. https://doi.org/10.1039/C8PP90059K
Barnes, P. W., Robson, T. M., Neale, P. J., Williamson, C. E., Zepp, R. G., Madronich, S., Wilson, S. R., Andrady, A. L., Heikkilä, A. M., & Bernhard, G. H. (2022). Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochemical & Photobiological Sciences, 21(3), 275-301. https://doi.org/10.1007/s43630-022-00176-5
Bekchanova, M., Campion, L., Bruns, S., Kuppens, T., Lehmann, J., Jozefczak, M., Cuypers, A., & Malina, R. (2024). Biochar improves the nutrient cycle in sandy-textured soils and increases crop yield: a systematic review. Environmental Evidence, 13(1), 3. https://doi.org/10.1186/s13750-024-00326-5
Burrell, A., Evans, J., & De Kauwe, M. (2020). Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nature communications, 11(1), 1-11. https://doi.org/10.1038/s41467-020-17710-7
Chen, B., Gu, Z., Wu, M., Ma, Z., Lim, H. R., Khoo, K. S., & Show, P. L. (2022). Advancement pathway of biochar resources from macroalgae biomass: A review. Biomass and Bioenergy, 167, 106650. https://doi.org/10.1016/j.biombioe.2022.106650
Chen, Z., Dong, Y., & Huang, X. (2022). Plant responses to UV-B radiation: Signaling, acclimation and stress tolerance. Stress Biology, 2(1), 51. https://doi.org/10.1007/s44154-022-00076-9
Correa, M. d. S. S., Saavedra, M. e. R. R., Parra, E. A. E., Ontiveros, E. N., Flores, J. d. C. B., Montiel, J. G. O., Contreras, J. E. C., Urrutia, E. L., Acevedo, J. G. Á., & Nopala, G. E. J. (2023). Ultraviolet radiation and its effects on plants. In Abiotic stress in plants-adaptations to climate change. IntechOpen. https://doi.org/10.5772/intechopen.109474
Das, S., Mohanty, S., Sahu, G., Rana, M., & Pilli, K. (2021). Biochar: A sustainable approach for improving soil health and environment. Soil erosion-current challenges and future perspectives in a changing world, 1, 5772.
Grace, J., Lloyd, J., Miranda, A. C., Miranda, H., & Gash, J. (1998). Fluxes of carbon dioxide and water vapour over a C4 pasture in southwestern Amazonia (Brazil). Functional Plant Biology, 25(5), 519-530. https://doi.org/10.1071/PP97120
Gryta, A., Frąc, M., & Oszust, K. (2020). Genetic and metabolic diversity of soil microbiome in response to exogenous organic matter amendments. Agronomy, 10(4), 546. https://doi.org/10.3390/agronomy10040546
Hailegnaw, N. S., Mercl, F., Pračke, K., Száková, J., & Tlustoš, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19, 2405-2416. https://doi.org/10.1007/s11368-019-02264-z (10.3390/agronomy13092224)
Hays, K. N., Muir, J. P., Kan, E., DeLaune, P. B., Brady, J. A., Obayomi, O., & Mitchell, A. B. (2023). Tillage, Manure, and Biochar Short-Term Effects on Soil Characteristics in Forage Systems. Agronomy, 13(9), 2224.
Holcman, E., Sentelhas, P. C., & Mello, S. d. C. (2017). Cherry tomato yield in greenhouses with different plastic covers. Ciência Rural, 47(10), e20160991. https://doi.org/10.1590/0103-8478cr20160991
Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., Ma, Z., Guo, W., & Li, Z. (2017). Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55(3), 719-778. https://doi.org/10.1002/2016RG000550
Hussain, M. B., Al-Hadidi, S. H., Erfanian, M. B., Yahia, M. N. D., Mullungal, M. N., Alsafran, M., Bai, Y., & Alatalo, J. M. (2023). Photodegradation and its effect on plant litter decomposition in terrestrial ecosystems: a systematic review. Soil Systems, 7(1), 6. https://doi.org/10.3390/soilsystems7010006
Jankauskienė, J., & Laužikė, K. (2023). Effect of Sweet Pepper (Capsicum annuum L.) Seedling Age and Cultivation Method on Seedling Quality, Photosynthetic Parameters and Productivity. Agronomy, 13(9), 2255. https://doi.org/10.3390/agronomy13092255
Jaya, I. K. D. (2021). Cropping strategy in dryland areas with a high rainfall variability: a study from maize farmers in North Lombok, Indonesia. Journal of Agriculture Food and Development, 7, 25-31.
Jo, W. J., & Shin, J. H. (2020). Effect of leaf-area management on tomato plant growth in greenhouses. Horticulture, Environment, and Biotechnology, 61(6), 981-988. https://doi.org/10.1007/s13580-020-00283-1
Katakula, A. A. N., Gawanab, W., Itanna, F., & Mupambwa, H. A. (2020). The potential fertilizer value of Namibian beach-cast seaweed (Laminaria pallida and Gracilariopsis funicularis) biochar as a nutrient source in organic agriculture. Scientific African, 10, e00592. https://doi.org/10.1016/j.sciaf.2020.e00592
Kaur, I. (2020). Seaweeds: Soil health boosters for sustainable agriculture. Soil Health, 163-182. https://doi.org/10.1007/978-3-030-44364-1_10
Lal, R. (2016). Soil health and carbon management. Food and energy security, 5(4), 212-222. https://doi.org/10.1002/fes3.96
Lal, R. (2020). Regenerative agriculture for food and climate. Journal of soil and water conservation, 75(5), 123A-124A. https://doi.org/doi:10.2489/jswc.2020.0620A
Lei, Y., Xu, L., Wang, M., Sun, S., Yang, Y., & Xu, C. (2024). Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis. Sustainability, 16(15), 6397. https://doi.org/10.3390/su16156397
Li, C., Han, Q., Luo, G., Zhao, C., Li, S., Wang, Y., & Yu, D. (2018). Effects of cropland conversion and climate change on agrosystem carbon balance of China’s dryland: a typical watershed study. Sustainability, 10(12), 4508. https://doi.org/10.3390/su10124508
Lu, T., Meng, Z., Zhang, G., Qi, M., Sun, Z., Liu, Y., & Li, T. (2017). Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Frontiers in Plant Science, 8, 365. https://doi.org/10.3389/fpls.2017.00365
Mamede, M., Cotas, J., Bahcevandziev, K., & Pereira, L. (2023). Seaweed polysaccharides in agriculture: A next step towards sustainability. Applied Sciences, 13(11), 6594. https://doi.org/https://doi.org/10.3390/app13116594
Mubarok, S., Jadid, N., Widiastuti, A., Derajat Matra, D., Budiarto, R., Lestari, F. W., Nuraini, A., Suminar, E., Pradana Nur Rahmat, B., & Ezura, H. (2023). Parthenocarpic tomato mutants, iaa9-3 and iaa9-5, show plant adaptability and fruiting ability under heat-stress conditions. Frontiers in Plant Science, 14, 1090774. https://doi.org/10.3389/fpls.2023.1090774
Paul, A., Dziallas, C., Zwirnmann, E., Gjessing, E. T., & Grossart, H.-P. (2012). UV irradiation of natural organic matter (NOM): impact on organic carbon and bacteria. Aquatic Sciences, 74, 443-454. https://doi.org/10.1007/s00027-011-0239-y
Pei, B., Zhang, Y., Liu, T., Cao, J., Ji, H., Hu, Z., Wu, X., Wang, F., Lu, Y., & Chen, N. (2024). Effects of seaweed fertilizer application on crops’ yield and quality in field conditions in China-A meta-analysis. Plos one, 19(7), e0307517. https://doi.org/https://doi.org/10.1371/journal.pone.0307517
Prasedya, E. S., Kurniawan, N. S. H., Ardiana, N., Ilhami, B. T. K., Mulyaningsih, T., Astuti, S. P., Jupri, A., Nikmatullah, A., Jaya, I. K. D., & Widyastuti, S. (2022). Effects of Fermented Seaweed Fertilizer Treatment on Paddy Amino Acid Content and Rhizosphere Microbiome Community. Fermentation, 8(9), 420. https://doi.org/https://doi.org/10.3390/fermentation8090420
Rayne, N., & Aula, L. (2020). Livestock manure and the impacts on soil health: A review. Soil Systems, 4(4), 64. https://doi.org/10.3390/soilsystems4040064
Resentini, F., Orozco-Arroyo, G., Cucinotta, M., & Mendes, M. A. (2023). The impact of heat stress in plant reproduction. Frontiers in Plant Science, 14, 1271644. https://doi.org/10.3389/fpls.2023.1271644
Ro, S., Chea, L., Ngoun, S., Stewart, Z. P., Roeurn, S., Theam, P., Lim, S., Sor, R., Kosal, M., & Roeun, M. (2021). Response of tomato genotypes under different high temperatures in field and greenhouse conditions. Plants, 10(3), 449. https://doi.org/10.3390/plants10030449
Roberts, D. A., Paul, N. A., Dworjanyn, S. A., Bird, M. I., & de Nys, R. (2015). Biochar from commercially cultivated seaweed for soil amelioration. Scientific reports, 5(1), 9665. https://doi.org/10.1038/srep09665
Sandhu, S., Sekaran, U., Ozlu, E., Hoilett, N. O., & Kumar, S. (2019). Short-term impacts of biochar and manure application on soil labile carbon fractions, enzyme activity, and microbial community structure. Biochar, 1, 271-282. https://doi.org/10.1007/s42773-019-00025-2
Sani, M., Alhassan, I., Amin, M., Sani, S., & Musa, A. (2019). The Trends of Soil Organic Matter and CEC in Northern Guinea Savannah, in Relation to Texture and Soil Depth. Dutse Journal of Agriculture and Food Security, 6(2), 100-108.
Sato, S., Peet, M., & Thomas, J. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, cell & environment, 23(7), 719-726. https://doi.org/10.1046/j.1365-3040.2000.00589.x
Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 4(1), 8. https://doi.org/10.1007/s42773-022-00138-1
Sterk, G., & Stoorvogel, J. J. (2020). Desertification–scientific versus political realities. Land, 9(5), 156. https://doi.org/10.3390/land9050156
Sun, C., Feng, X., Fu, B., & Ma, S. (2023). Desertification vulnerability under accelerated dryland expansion. Land Degradation & Development, 34(7), 1991-2004. https://doi.org/https://doi.org/10.1002/ldr.4584
Tripathi, S., Bhadouria, R., Srivastava, P., Devi, R. S., Chaturvedi, R., & Raghubanshi, A. (2020). Effects of light availability on leaf attributes and seedling growth of four tree species in tropical dry forest. Ecological Processes, 9, 1-16. https://doi.org/10.1186/s13717-019-0206-4
Veeragurunathan, V., Vijay Anand, K., Ghosh, A., Gurumoorthy, U., & Gwen Grace, P. (2023). Ecological Significance of Seaweed Biomass Production and Its Role in Sustainable Agriculture. In Smart Agriculture for Developing Nations: Status, Perspectives and Challenges (pp. 161-181). Springer. https://doi.org/10.1007/978-981-19-8738-0_12
Voltr, V., Menšík, L., Hlisnikovský, L., Hruška, M., Pokorný, E., & Pospíšilová, L. (2021). The soil organic matter in connection with soil properties and soil inputs. Agronomy, 11(4), 779. https://doi.org/10.3390/agronomy11040779
Wang, Q., Chai, Q., Dou, X., Zhao, C., Yin, W., Li, H., & Wei, J. (2024). Soil Microorganisms in Agricultural Fields and Agronomic Regulation Pathways. Agronomy, 14(4), 669. https://doi.org/10.3390/agronomy14040669
Wei, X., Xie, B., Wan, C., Song, R., Zhong, W., Xin, S., & Song, K. (2024). Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy, 14(3), 609. https://doi.org/10.3390/agronomy14030609
Xiao, Z., Lei, H., Jin, C., Pan, H., & Lian, Y. (2022). Relationship between the dynamic characteristics of tomato plant height and leaf area index with yield, under aerated drip irrigation and nitrogen application in greenhouses. Agronomy, 13(1), 116. https://doi.org/10.3390/agronomy13010116
Xie, F., Xia, Y., Feng, W., & Niu, Y. (2023). Increasing surface UV radiation in the tropics and northern mid-latitudes due to ozone depletion after 2010. Advances in Atmospheric Sciences, 40(10), 1833-1843. https://doi.org/10.1007/s00376-023-2354-9
Yang, S., Wang, H., Wang, G., Wang, J., Gu, A., Xue, X., & Chen, R. (2023). Effects of seaweed-extract-based organic fertilizers on the levels of mineral elements, sugar–acid components and hormones in Fuji apples. Agronomy, 13(4), 969. https://doi.org/https://doi.org/10.3390/agronomy13040969
Zhang, R., Yang, P., Liu, S., Wang, C., & Liu, J. (2022). Evaluation of the methods for estimating leaf chlorophyll content with SPAD chlorophyll meters. Remote Sensing, 14(20), 5144. https://doi.org/10.3390/rs14205144
Author Biographies
Laila Safta, University of Mataram
I Komang Damar Jaya, University of Mataram
Herman Suheri, University of Mataram
Dryland Agriculture Study Program, Postgraduate University of Mataram
Sudirman, University of Mataram
License
Copyright (c) 2025 Laila Safta, I Komang Damar Jaya, Herman Suheri, Sudirman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).