Vol. 11 No. 3 (2025): March
Open Access
Peer Reviewed

Smart Fish Feeder by Measuring the Number of Pond Water Surface Vibrations Based on the Fish Hunger Levels

Authors

Jatmiko Endro Suseno , Agus Setyawan , Thessa Putri Aulia

DOI:

10.29303/jppipa.v11i3.10342

Published:

2025-03-25

Downloads

Abstract

Suboptimal fish feeding management can affect the growth rate of fish. Fish   Feeding management consists of aspects of feed nutritional content, quantity, and feeding system. A system that still relies on humans or manual labor is very likely to cause human error in the process, so utilizing technology can be an option to improve the feeding system. This study aims to design and test the Smart Fish Feeder Design as an innovation in technology-based freshwater fish feeding. The fish Feeder works by providing fish feeding scheduling using the RTC DS3231 and detecting vibrations in pond water, which aims to determine the feeding process using the SW-420 Vibration Sensor. If a certain vibration is used as a parameter that the fish are still consuming feed, then the feeding process continues. The duration of the influence of sensor readings in adding feed lasts for one minute and can be adjusted according to pond conditions or the number of research subjects. The results show that the design can provide fish feed on a scheduled basis with high accuracy and can detect water vibrations as an indicator of feed consumption by fish.

Keywords:

Automatic Fish Feed Schedulling Vibration Sensor

References

Anhar, A., Hafiz, R. Y., Nurhalim, N., & Firdaus, F. (2023). Smart Fish Farm: Smart Feeding Berbasis Internet of Things pada Budidaya Fish Patin Siam. Voteteknika (Vocational Teknik Elektronika and Informatika), 11(4). https://doi.org/10.24036/voteteknika.v11i4.12559

Araujo, G., Silva, J.W.A., Cotas, J. & Pereira, L. (2022). Fish farming techniques: current situation and trends. Journal of Marine Science and Engineering, 10(11), 1598. https://doi.org/10.3390/jmse10111598

Elfitasari, T., & Albert, A. (2017). Challenges encountered by small scale fish farmers in assuring fish product sustainability. Omni-Akuatika, 13(2), 128–136. http://dx.doi.org/10.20884/1.oa.2017.13.2.256

Ervani, R. (2019). Modul RTC DS3231. RezArduino. Retrieved from https://arduino.rezaervani.com/2019/03/02/modul-rtc-ds3231/

Hasanuddin, M., & Anandi, A. (2019). Alat Pemberi Pakan Ikan Otomatis Terjadwal Dengan Sistem Kendali Mikrokontroller. Jurnal IT, 10(1), 31-36. Retrieved from https://jurnal.lppm-stmikhandayani.ac.id/index.php/jti/article/view/90

Haetami, K., Abun and Pratiwy, F.M. (2023). Efektivitas Pemberlakuan Restricted Feeding Pada Budidaya Ikan: Mini Review. Jurnal Ruaya: Jurnal Penelitian dan Kajian Ilmu Perikanan dan Kelautan, 12(1), 24-29.

Iwanowicz, D.D. (2011). Overview On The Effects Of Parasites On Fish Health. In Proceedings of the Third Bilateral Conference between Russia and the United States. Bridging America and Russia with Shared Perspectives on Aquatic Animal Health, 176-184. Retrieved from https://pubs.usgs.gov/publication/70047221

Karningsih, P.D., Kusumawardani, R., Syahroni, N. & Mulyadi, Y. (2021). Automated Fish Feeding System For an Offshore Aquaculture Unit. In IOP conference series: Materials science and engineering, 1072(1), 012073. https://doi.org/10.1088/1757-899X/1072/1/012073

Mahendra, M. (2018). Effect of Different Commercial Feed on the Growth and Survival of Tawes Fish Seeds (Barbonymus gonionotus). Jurnal Perfishan Terpadu, 1(2). https://doi.org/10.35308/jupiter.v1i2.796

Mohan, M., Konduri, A., Swapna, M., Sravani, R.S., & Kisku, C. (2021). Importance Of Dissolved Oxygen In Aquaculture Ponds. Just Agriculture, 2(3), 1-7 Retrieved from https://justagriculture.in/files/newsletter/2021/november/4.%20Importance%20Of%20Dissolved%20Oxygen%20In%20Aquaculture%20Pond.pdf

Putra, A. M., & Pulungan, A. B. (2020). Automatic Fish Feeder. JTEV (Jurnal Teknik Elektro and Vokasional), 6(2), 113-121. https://doi.org/10.24036/jtev.v6i2.108580

Rarassari, M. A., Dwinanti, S. H., Absharina, F. D., & Gevira, Z. (2021). Application of Biofloc and Probiotics in Feed for Pearl Catfish Cultivation (Clarias Gariepinus). Journal of Fisheries and Marine Research, 5(2), 329-334.

Rathy, P.A.A. & Jenefer. (2024). IoT Based Automatic Fish Feeder Using Mobile Application, Futuristic Trends in Artificial Intelligence. IIP Series, 3, 12-21. https://doi.org/10.58532/v3bgai8p1ch2

Uddin, M. N., Rashid, M., Mostafa, M., Belayet, H., Salam, S., Nithe, N., Rahman, M. & Aziz, A. (2016). Development of automatic fish feeder. Global Journal of Researches in engineering: A mechanical and Mechanics Engineering, 16(2), 11. Retrieved from https://globaljournals.org/GJRE_Volume16/3-Development-of-Automatic-Fish.pdf

Vatsos, I. & Angelidis, P. (2010). Water Quality and Fish Diseases. Journal of the Hellenic Veterinary Medical Society. 61(1), 40-48. https://doi.org/10.12681/jhvms.14875

Author Biographies

Jatmiko Endro Suseno, Universitas Diponegoro

Author Origin : Indonesia

Agus Setyawan, Universitas Diponegoro

Author Origin : Indonesia

Thessa Putri Aulia, Universitas Diponegoro

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Suseno, J. E., Setyawan, A., & Aulia, T. P. (2025). Smart Fish Feeder by Measuring the Number of Pond Water Surface Vibrations Based on the Fish Hunger Levels. Jurnal Penelitian Pendidikan IPA, 11(3), 261–266. https://doi.org/10.29303/jppipa.v11i3.10342