Empowering Computational Thinking through PBL-SSI: Tackling Conservation Threats Effectively
DOI:
10.29303/jppipa.v11i5.10359Published:
2025-05-31Issue:
Vol. 11 No. 5 (2025): MayKeywords:
Computational Thinking, Conservation biology, Problem based learning (PBL), Socio-Scientific Issues (SSI)Research Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Computational thinking is one of the skills needed to support 21st-century skills, especially in science education, such as conservation biology. This study aims to analyze the increase in CT in conservation biology lectures, especially the topic of conservation threats. The lectures given are based on PBL-SSI. This study is a quantitative study with a quasi-experimental method. The research design used is a one-group pretest and posttest. The instrument used is a multiple-choice test with 15 questions containing indicators of computational thinking. The thinking indicators used consist of algorithms, decomposition, abstraction, and pattern recognition. The results show that PBL-SSI can significantly improve computational thinking skills with the decomposition indicator as the indicator that shows the most improvement
References
Abidi, M. H., Cahyono, H., & Susanti, R. D. (2023). Analysis of Students’ Computational Thinking Ability in Solving Contextual Problems. Online) Thinking Ability in Solving Contextual Problems. Mathematics Education Journal, 7(2), 216–224. https://doi.org/10.22219/mej.v7i1.25041
Aisy, M. R., Trisnowati, E., & Siswanto, S. (2024). The Effect of the Problem-Based Learning (PBL) Model in the Context of Socio-Scientific Issues (SSI) on Critical Thinking Ability on Digestive System Material. Jurnal Inovasi Pendidikan IPA, 10(2), 185–195. https://doi.org/10.21831/jipi.v10i2.75231
Ali, S. S. (2019). Problem Based Learning: A Student-Centered Approach. English Language Teaching, 12(5), 73. https://doi.org/10.5539/elt.v12n5p73
Alpianti, N. T. P., & Amelia, R. N. (2024). JPPS (Jurnal Penelitian Pendidikan Sains) Infusing Learners’ Problem-Solving Skills Through Problem-Based Learning Model Assisted Socio-Scientific Issues (SSI) Worksheet on Environmental Pollution. JPPS, 13(2), 83–99. https://doi.org/10.26740/jpps.v13n1.p83-99
Ansori, M. (2020). Pemikiran Komputasi (Computational Thinking) dalam Pemecahan Masalah. DIRASAH, 3(1). https://ejournal.iaifa.ac.id/index.php/dirasah
Arik, M., & Tapcu, M. (2021). Computational Thinking Integration into Science Classrooms: Example of Digestive System. Journal of Science Education and Technology, 31(1), 99–115.
Arthamena, V. D., Ayubi, M., Atun, S., & Suyanta, S. (2024). Use of Socio-Scientific Issues in Chemistry Learning. Jurnal Penelitian Pendidikan IPA, 10(1), 38–46. https://doi.org/10.29303/jppipa.v10i1.6285
Bai, H., Wang, X., & Zhao, L. (2021). Effects of the Problem-Oriented Learning Model on Middle School Students’ Computational Thinking Skills in a Python Course. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.771221
Bonebrake, T. C., Guo, F., Dingle, C., Baker, D. M., Kitching, R. L., & Ashton, L. A. (2019). Integrating Proximal and Horizon Threats to Biodiversity for Conservation. In Trends in Ecology and Evolution (Vol. 34, Issue 9, pp. 781–788). Elsevier Ltd. https://doi.org/10.1016/j.tree.2019.04.001
Caeli, E. N., & Yadav, A. (2020). Unplugged Approaches to Computational Thinking: a Historical Perspective. TechTrends, 64(1), 29–36. https://doi.org/10.1007/s11528-019-00410-5
Candrawati, E., Uliyandari, M., Rustaman, N. Y., & Kaniawati, I. (2022). Profile of Computational Thinking Skills in Environmental Chemistry Courses for Prospective Science Teacher Students. JPPS (Jurnal Penelitian Pendidikan Sains), 152–165. https://doi.org/10.26740/jpps.v11n2.p152-165
Caramay, C. S., & Cruz, R. A. (2023). Problem-Based Learning And Its Effects On Achievement And Attitude In Science Among Grade 8 Students. Investigacoes Em Ensino de Ciencias, 28(1), 97–110. https://doi.org/10.22600/1518-8795.ienci2023v28n1p97
Chen, L., & Xiao, S. (2021). Perceptions, challenges and coping strategies of science teachers in teaching socioscientific issues: A systematic review. In Educational Research Review (Vol. 32). Elsevier Ltd. https://doi.org/10.1016/j.edurev.2020.100377
Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education. Routledge.
Creswell, D. (2019). Educational Research. Pearson Edcuation .
Ehsan, H., Rehmat, A. P., & Cardella, M. E. (2021). Computational thinking embedded in engineering design: capturing computational thinking of children in an informal engineering design activity. International Journal of Technology and Design Education, 31(3), 441–464. https://doi.org/10.1007/s10798-020-09562-5
Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2021). Computational thinking in programming with Scratch in primary schools: A systematic review. Computer Applications in Engineering Education, 29(1), 12–28. https://doi.org/10.1002/cae.22255
Fajarianingtyas, D. A., Hidayat, J. N., Herowati, H., & Azizah, L. F. (2023). The Teaching Media for Mangrove Photosynthesis E-Booklets With a Socioscientific Issue Approach Through PBL Improve Students’ Critical Thinking. Jurnal Pedagogi Dan Pembelajaran, 6(1), 114–122. https://doi.org/10.23887/jp2.v6i1.53716
Fita, M. N., Jatmiko, B., & Sudibyo, E. (2021). Studies in Learning and Teaching Studies in Learning and Teaching The Effectiveness of Problem Based Learning (PBL) Based Socioscientific Issue (SSI) to Improve Critical Thinking Skills. 2(3), 1–9. https://doi.org/10.46627/silet
Fonseca, Paterno, G. B., Guadagnin, D. L., Venticinque, E. M., Overbeck, G. E., Ganade, G., Metzger, J. P., Kollmann, J., Sauer, J., Cardoso, M. Z., Lopes, P. F. M., Oliveira, R. S., Pillar, V. D., & Weisser, W. W. (2021). Conservation biology: four decades of problem- and solution-based research. In Perspectives in Ecology and Conservation (Vol. 19, Issue 2, pp. 121–130). Associacao Brasileira de Ciencia Ecologica e Conservacao. https://doi.org/10.1016/j.pecon.2021.03.003
Grover, S., & Pea, R. (2021). Computational Thinking: A Competency Whose Time Has Come. In Computer Science Education. Bloomsbury Academic. https://doi.org/10.5040/9781350057142.ch-003
Hadi, N., Ainy, N. S., Sjahfirdi, L., & Mujadid, I. (2023). Prinsip 6R Konservasi dan Perlindungan Keanekaragaman Hayati: Menahan Laju Kepunahan dan Ancaman Utama Hidupan Liar di Indonesia. Growth Dan Manajemen Lingkungan, 13(1). https://doi.org/10.21009/jgg.131.04
Hanifah, E., Setiono, S., & Nuranti, G. (2021). Pengaruh Model Socio-Scientific Issue Terhadap Keterampilan Memecahkan Masalah Menggunakan Aplikasi Powtoon pada Materi Perubahan Lingkungan. BIODIK, 7(4), 18–28. https://doi.org/10.22437/bio.v7i4.13758
Hikam, S. M., Setiono, S., & Ramdhan, B. (2023). Profil Keterampilan Berpikir Komputasi Peserta Didik Di MAN Kota Sukabumi Ditinjau dari Kecerdasan Majemuk Pada Materi Sitem Pencernaan. BIODIK, 9(1), 58–66. https://doi.org/10.22437/bio.v9i1.19154
Hooshyar, D., Malva, L., Yang, Y., Pedaste, M., Wang, M., & Lim, H. (2021). An adaptive educational computer game: Effects on students’ knowledge and learning attitude in computational thinking. Computers in Human Behavior, 114. https://doi.org/10.1016/j.chb.2020.106575
Hovardas, T. (2015). Strengths, Weaknesses, Opportunities and Threats (SWOT) Analysis: A template for addressing the social dimension in the study of socio-scientific issues. AEJES 1, 1(1).
Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers and Education, 126, 296–310. https://doi.org/10.1016/j.compedu.2018.07.004
Huda, N., & Rohaeti, E. (2024). Computational Thinking Skill Level of Senior High School Students Majoring in Natural Science. International Journal of Learning, Teaching and Educational Research, 23(1), 339–359. https://doi.org/10.26803/ijlter.23.1.17
Irawati, F. I. M., & Sulisworo, D. (2023). Utilising smart water monitoring with IoT in science learning with problem-based learning model: Impact on critical thinking skills and the role of learning interest. Journal of Pedagogical Research, 7(4), 69–80. https://doi.org/10.33902/JPR.202323708
Kanaki, K., Kalogiannakis, M., Poulakis, E., & Politis, P. (2022). Investigating the Association between Algorithmic Thinking and Performance in Environmental Study. Sustainability (Switzerland), 14(17). https://doi.org/10.3390/su141710672
Lee, Mauriello, M. L., Ahn, J., & Bederson, B. B. (2013). CTArcade: Computational Thinking with Games in School Age Children.
Lee, P. L., Lan, W., Hamman, D., & Hendricks, B. (2008). The effects of teaching notetaking strategies on elementary students’ science learning. Instructional Science, 36(3), 191–201. https://doi.org/10.1007/s11251-007-9027-4
Lenkauskaitė, J., Bubnys, R., Masiliauskienė, E., & Malinauskienė, D. (2021). Participation in the assessment processes in problem-based learning: Experiences of the students of social sciences in Lithuania. Education Sciences, 11(11). https://doi.org/10.3390/educsci11110678
Levinson, R. (2006). Towards a theoretical framework for teaching controversial socio-scientific issues. International Journal of Science Education, 28(10), 1201–1224. https://doi.org/10.1080/09500690600560753
Lodi, M., & Martini, S. (2021). Computational Thinking, Between Papert and Wing. Science and Education, 30(4), 883–908. https://doi.org/10.1007/s11191-021-00202-5
Lyon, J. A., & J. Magana, A. (2020). Computational thinking in higher education: A review of the literature. Computer Applications in Engineering Education, 28(5), 1174–1189. https://doi.org/10.1002/cae.22295
Maulidya, H. Z., Aprilia, N., & Hanafi, Y. (2021). Studi Literatur Peningkatan Kemampuan Analisis Siswa Melalui Model PBL Pada Pembelajaran IPA Biologi. Journal of Biology Learning, 3(2), 55. https://doi.org/10.32585/jbl.v3i2.1526
Meilasari, S., Damris M, D. M., & Yelianti, U. (2020). Kajian Model Pembelajaran Problem Based Learning (PBL) dalam Pembelajaran di Sekolah. BIOEDUSAINS:Jurnal Pendidikan Biologi Dan Sains, 3(2), 195–207. https://doi.org/10.31539/bioedusains.v3i2.1849
Milenia, K., Rahman, E. F., & Nuraeni, A. (2024). Model Implementation Problem-Based Learning with a Differentiated Learning Approach to Improve Abilities, Computational Thinking Student. Edunesia : Jurnal Ilmiah Pendidikan, 5(3), 1398–1413. https://doi.org/10.51276/edu.v5i3.944
Miterianifa, Trisnayanti, Y., Khoiri, A., & Ayu, H. D. (2019). Meta-analysis: The effect of problem-based learning on students’ critical thinking skills. AIP Conference Proceedings, 2194. https://doi.org/10.1063/1.5139796
Moore, T. J., Brophy, S. P., Tank, K. M., Lopez, R. D., Johnston, A. C., Hynes, M. M., & Gajdzik, E. (2020). Multiple Representations in Computational Thinking Tasks: A Clinical Study of Second-Grade Students. Journal of Science Education and Technology, 29(1), 19–34. https://doi.org/10.1007/s10956-020-09812-0
Niesenbaum, R. A. (2019). The integration of conservation, biodiversity, and sustainability. In Sustainability (Switzerland) (Vol. 11, Issue 17). MDPI. https://doi.org/10.3390/su11174676
Ogegbo, A. A., & Ramnarain, U. (2022). A systematic review of computational thinking in science classrooms. In Studies in Science Education (Vol. 58, Issue 2, pp. 203–230). Routledge. https://doi.org/10.1080/03057267.2021.1963580
Oktaviani, D., & Satanti, S. (2024). Improving Unplugged Computational Thinking Skills Through Integrated Problem-Based and Differentiated Learning in Indonesia. Acta Paedagogica Vilnensia, 52, 93–110. https://doi.org/10.15388/ActPaed.2024.52.10
Owens, D. C., Herman, B. C., Oertli, R. T., Lannin, A. A., & Sadler, T. D. (2019). Secondary science and mathematics teachers’ environmental issues engagement through socioscientific reasoning. Eurasia Journal of Mathematics, Science and Technology Education, 15(6). https://doi.org/10.29333/ejmste/103561
Permatasari, D., & Aji, S. (2024). Penerapan Problem Based Learning Berbasis Socio-Scientific Issues Terhadap Scientific Literacy Skills Siswa. Proceeding Seminar Nasional IPA, 743–749.
Ramos, J. H., Pernaa, J., Cáceres-Jensen, L., & Rodríguez-Becerra, J. (2021). The effects of using socio-scientific issues and technology in problem-based learning: A systematic review. In Education Sciences (Vol. 11, Issue 10). MDPI. https://doi.org/10.3390/educsci11100640
Ridley, F. A., McGowan, P. J. K., & Mair, L. (2020). The scope and extent of literature that maps threats to species: A systematic map protocol. Environmental Evidence, 9(1). https://doi.org/10.1186/s13750-020-00206-8
Riley, D. D., & Hunt, K. A. (n.d.). Chapman & Hall/CRC TEXTBOOKS IN COMPUTING Computational thinking for the modern problem Solver.
Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. In Journal of Research in Science Teaching (Vol. 41, Issue 5, pp. 513–536). https://doi.org/10.1002/tea.20009
Schenk, L., Hamza, K., Arvanitis, L., Lundegård, I., Wojcik, A., & Haglund, K. (2021). Socioscientific Issues in Science Education: An opportunity to Incorporate Education about Risk and Risk Analysis? Risk Analysis, 41(12), 2209–2219. https://doi.org/10.1111/risa.13737
Scholkmann, A., Stegeager, N., & Miller, R. K. (2023). Integrating the Integration: The Role and Challenges of Problem-Based Learning in Bringing Together Social Science and Humanities (SSH) and Science, Technology, Engineering and Mathematics (STEM). Journal of Problem Based Learning in Higher Education, 11(1), 98–123. https://doi.org/10.54337/ojs.jpblhe.v11i1.7371
Selby, C. C., & Woollard, J. (2014). Refining an Understanding of Computational Thinking.
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying Computational Thinking. Educational Research Review, 22, 142–158.
Stolz, M., Witteck, T., Marks, R., & Eilks, I. (2013). Reflecting socio-scientific issues for science education coming from the case of curriculum development on doping in chemistry education. Eurasia Journal of Mathematics, Science and Technology Education, 9(4), 361–370. https://doi.org/10.12973/eurasia.2014.945a
Suparman, A. R., Rohaeti, E., & Wening, S. (2022). European Journal of Educational Research Development of Attitude Assessment Instruments Towards Socio-Scientific Issues in Chemistry Learning Development of attitude assessment instruments towards socio-scientific issues in chemistry learning. European Journal of Educational Research, 11(4), 1947. https://doi.org/10.12973/eu-jer.11.4.1949
Surbakti, D. K. B., Hidayat, T., Purwianingsih, W., Widodo, A., & Supriatno, B. (2023). Analysis of Biology Teacher’s Computational Thinking Skills in Environmental Learning. Jurnal Penelitian Pendidikan IPA, 9(5), 2604–2612. https://doi.org/10.29303/jppipa.v9i5.3411
Tang, K. Y., Chou, T. L., & Tsai, C. C. (2020). A Content Analysis of Computational Thinking Research: An International Publication Trends and Research Typology. Asia-Pacific Education Researcher, 29(1), 9–19. https://doi.org/10.1007/s40299-019-00442-8
Viehmann, C., Fernández Cárdenas, J. M., & Reynaga Peña, C. G. (2024). The Use of Socioscientific Issues in Science Lessons: A Scoping Review. In Sustainability (Switzerland) (Vol. 16, Issue 14). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/su16145827
Virtanen, E. A., Söderholm, M., & Moilanen, A. (2022). How threats inform conservation planning—A systematic review protocol. In PLoS ONE (Vol. 17, Issue 5 May). Public Library of Science. https://doi.org/10.1371/journal.pone.0269107
Widodo, A. (2021). Pembelajaran Ilmu Pengetahuan Alam: Dasar-dasar Untuk Praktik. UPI Perss.
Wing. (2006). Computational Thinking. Concurrences, 49(3), 22–24.
Wing. (2017). Computational thinking’s influence on research and education for all Influenza del pensiero computazionale nella ricerca e nell’educazione per tutti. Italian Journal of Educational Technology, 25(2), 7–14. https://doi.org/10.17471/2499-4324/922
Wong, S. S. H., Kim, M., & Jin, Q. (2021). Critical Literacy Practices Within Problem-Based Learning Projects in Science. Interchange, 52(4), 463–477. https://doi.org/10.1007/s10780-021-09426-4
Yanti, Y., Nur Kalifah, D. R., & Hidayah, N. (2024). Implementing Computational Thinking Skills in Socio Scientific Issue (SSI) of Force Material Around Us at Elementary School. E3S Web of Conferences, 482. https://doi.org/10.1051/e3sconf/202448204001
Yoon, S. A., Chinn, C., Noushad, N., Richman, T., Hussain-Abidi, H., Hunkar, K., Cottone, A., Katz, J., Mitkus, E., & Wendel, D. (2023). Seven design principles for teaching complex socioscientific issues: the design of a complex systems agent-based disease epidemic model and the application of epistemic practices in high school biology. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1210153
Zapata-Ros, M., & Palacios, Y. B. (2021). The bayesian thinking, a pervasive computational thinking. Revista de Educación a Distancia, 21(68). https://doi.org/10.6018/red.496321
Author Biographies
Nisa Sholehah Pangsuma, Indonesian Education University
Widi Purwianingsih, Education Indonesia University
Mimin Nurjhani Kusumastuti, Education Indonesia University
License
Copyright (c) 2025 Nisa Sholehah Pangsuma, Widi Purwianingsih, Mimin Nurjhani Kusumastuti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).