Intelligent Monitoring of Smoking Prohibition in Public Spaces Using YOLOv8: Real-Time Detection and Telegram Notifications
DOI:
10.29303/jppipa.v11i4.10519Published:
2025-04-25Issue:
Vol. 11 No. 4 (2025): AprilKeywords:
Artificial intelligence, Confusion matrix, Deep learning, Object detection, Real-time monitoring, Smoking detection, Telegram notification, YOLOv8Research Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
This study aims to develop an intelligent monitoring system that supports the enforcement of smoking prohibition in public spaces by leveraging advancements in Artificial Intelligence (AI) and deep learning. Utilizing the YOLOv8 (You Only Look Once version 8) object detection model, the system is designed to identify smoking activities in real-time and promptly send alerts through the Telegram messaging platform. The proposed method integrates real-time object detection with an automated notification system, ensuring responsive enforcement across diverse environmental conditions, including normal lighting, low-light scenarios, and partially occluded views. The system architecture combines the YOLOv8 model for detection and a Python-based Telegram bot for communication. The model was evaluated using a test dataset collected from various public spaces. It achieved an F1-Score of 81% and a confusion matrix accuracy of 89%, indicating a high level of reliability and precision in identifying smoking behaviors. Additionally, the average notification response time via Telegram was 1.5 seconds, enabling near-instantaneous alerting for enforcement personnel. In conclusion, the results demonstrate that the system is both accurate and efficient in detecting smoking activities. Its robust performance across different conditions and rapid alert mechanism positions it as a practical and scalable solution to enhance compliance with smoking regulations in public areas.
References
Amin, N. A., Haider, A., Naomi, T. T., Rahman, R. S., & Zaman, N. (2024). Efficient Monitoring of Illicit Activities : Identifying Smokers through Human Activity Recognition by. Brac University
Astiadewi, E., Martanto, M., Dikananda, A. R., & Rohman, D. (2025). Algoritma YOLOv8 Untuk Meningkatkan Analisa Gambar Dalam Mendeteksi Jerawat. Jurnal Informatika Teknologi Dan Sains (Jinteks), 7(1), 346–353. https://doi.org/10.51401/jinteks.v7i1.5432
Basri, M., Syakur, R., & Ilham, N. (2023). Differences in Pulse Frequency in Male Tobacco Smokers and Non-Smokers Aged 20-60 Years. Jurnal Penelitian Pendidikan IPA, 9(9), 7680–7684. https://doi.org/10.29303/jppipa.v9i9.5237
Casas, E., Ramos, L., Bendek, E., & Rivas-Echeverría, F. (2023). Assessing the Effectiveness of YOLO Architectures for Smoke and Wildfire Detection. IEEE Access, 11, 96554–96583. https://doi.org/10.1109/ACCESS.2023.3312217
Chetoui, M., & Akhloufi, M. A. (2024). Fire and Smoke Detection Using Fine-Tuned YOLOv8 and YOLOv7 Deep Models. Fire, 7(4), 135. https://doi.org/10.3390/fire7040135
Diharja, R., Fahlevi, M. R., Rahayu, E. S., & Handini, W. (2022). Prototype-Design of Soil Movement Detector Using IoT Hands-on Application. Jurnal Penelitian Pendidikan IPA, 8(4), 2245–2254. https://doi.org/10.29303/jppipa.v8i4.1709
Gozali, A. A. (2023). Power Station Engine Failure Early Warning System Using Thermal Camera. Jurnal Penelitian Pendidikan IPA, 9(8), 6590–6596. https://doi.org/10.29303/jppipa.v9i8.4598
Halim, S. H. A., Raj, D., Razi, N. A. M., Baharuddin, M. N., & Minhat, H. S. (2022). Constraints Related to Smoke-Free Policy Implementation: A Review. IIUM Medical Journal Malaysia, 21(3), 37–49. Retrieved from https://journals.iium.edu.my/kom/index.php/imjm/article/view/1716
Hayati, N. J., Singasatia, D., & Muttaqin, M. R. (2023). Object Tracking Menggunakan Algoritma You Only Look Once (YOLO)v8 untuk Menghitung Kendaraan. Komputa : Jurnal Ilmiah Komputer Dan Informatika, 12(2), 91–99. https://doi.org/10.34010/komputa.v12i2.10654
Ilić, V. (2024). The Integration of Artificial Intelligence and Computer Vision in Large-Scale Video Surveillance of Railway Stations. 2024 Zooming Innovation in Consumer Technologies Conference (ZINC), 42–47. IEEE. https://doi.org/10.1109/ZINC61849.2024.10579411
Immanuel, J. M., Ibrahim, I., Rahmadewi, R., & Saragih, Y. (2024). IoT-based Facelook and Fingerprint Safe Security System. Jurnal Penelitian Pendidikan IPA, 10(2), 500–505. https://doi.org/10.29303/jppipa.v10i2.6832
Islami, F., Sumijan, & Defit, S. (2024). Customized Convolutional Neural Network for Glaucoma Detection in Retinal Fundus Images. Jurnal Penelitian Pendidikan IPA, 10(8), 4606–4613. https://doi.org/10.29303/jppipa.v10i8.7614
Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2021). A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066–1073. https://doi.org/10.1016/j.procs.2022.01.135
Kurniawan, M. A., Wijaya, S. K., & Hanifa, N. R. (2023). Convolutional Neural Network for Earthquake Ground Motion Prediction Model in Earthquake Early Warning System in West Java. Jurnal Penelitian Pendidikan IPA, 9(11), 1004–1010. https://doi.org/10.29303/jppipa.v9i11.3514
Lavu, A. A. N. M., Zhang, H., Zhao, H., & Hossain, M. T. (2024). Indoor Smoking Detection Based on YOLO Framework with Infrared Image. LC International Journal of STEM, 4(4), 51–71. https://doi.org/10.5281/zenodo.14028770
Li, Yan, Ma, Y., & Long, Y. (2024). Protocol for assessing neighborhood physical disorder using the YOLOv8 deep learning model. STAR Protocols, 5(1), 102778. https://doi.org/10.1016/j.xpro.2023.102778
Li, Yiting, Fan, Q., Huang, H., Han, Z., & Gu, Q. (2023). A Modified YOLOv8 Detection Network for UAV Aerial Image Recognition. Drones, 7(5). https://doi.org/10.3390/drones7050304
Liu, B., Yu, C., Chen, B., & Zhao, Y. (2024). YOLO-GP: A Multi-Scale Dangerous Behavior Detection Model Based on YOLOv8. Symmetry, 16(6), 730. https://doi.org/10.3390/sym16060730
Muslim, N. A., Adi, S., Ratih, S. P., & Ulfah, N. H. (2023). Determinan Perilaku Merokok Remaja SMA/Sederajat di Kecamatan Lowokwaru Kota Malang. Perilaku Dan Promosi Kesehatan: Indonesian Journal of Health Promotion and Behavior, 5(1), 20. https://doi.org/10.47034/ppk.v5i1.6781
Muttaqin, R. Z., & Sudiana, D. (2025). Design of Realtime Web Application Firewall on Deep Learning-Based to Improve Web Application Security. Jurnal Penelitian Pendidikan IPA, 10(12), 11121–11129. https://doi.org/10.29303/jppipa.v10i12.8346
Nasution, S. W., & Kartika, K. (2022). Eggplant Disease Detection Using Yolo Algorithm Telegram Notified. International Journal of Engineering, Science and Information Technology, 2(4), 127–132. https://doi.org/10.52088/ijesty.v2i4.383
Noor, A. Z. M., Gernowo, R., & Nurhayati, O. D. (2023). Data Augmentation for Hoax Detection through the Method of Convolutional Neural Network in Indonesian News. Jurnal Penelitian Pendidikan IPA, 9(7), 5078–5084. https://doi.org/10.29303/jppipa.v9i7.4214
Nugroho, W., Zahabiyah, R., Afianto, & Arifianto, M. J. F. (2024). Application of Deep Learning YOLO in IoT System for Personal Protective Equipment Detection. Jurnal E-Komtek (Elektro-Komputer-Teknik), 8(2), 428–437. https://doi.org/10.37339/e-komtek.v8i2.2187
Pachlevy-Arirul, M., Eka Rakhmania, A., & Wahyuni Dali, S. (2024). Implementasi Klasifikasi Jenis Tembakau Cacah Dengan Metode Convolutional Neural Network (CNN) Pada Cv Malikus. JATI (Jurnal Mahasiswa Teknik Informatika), 8(6), 12806–12813. https://doi.org/10.36040/jati.v8i6.12023
Paramita, C., Supriyanto, C., & Putra, K. R. (2024). Comparative Analysis of YOLOv5 and YOLOv8 Cigarette Detection in Social Media Content. Scientific Journal of Informatics, 11(2), 341–352. https://doi.org/10.15294/sji.v11i2.2808
Park, G., & Lee, Y. (2024). Wildfire Smoke Detection Enhanced by Image Augmentation with StyleGAN2-ADA for YOLOv8 and RT-DETR Models. Fire, 7(10), 369. https://doi.org/10.3390/fire7100369
Putri, S. A., Murinto, & Sunardi. (2025). Implementasi Algoritma YOLOv5 untuk Otomatisasi Iklan Layananan Publik tentang Larangan Merokok. Jurnal Informatika Polinema, 11(2), 195–202. https://doi.org/10.33795/jip.v11i2.6343
Rachmawati, W. C., Ratih, S. P., Mawarni, D., Az Zahra, A. R., Ilmiyah, C., Putri, F. R., … Novitasari, Z. R. (2024). Overview Smoking Behavior and Quality of Life of Sports Department Students, Faculty of Sports Science, Universitas Negeri Malang. Preventia : The Indonesian Journal of Public Health, 9(1), 67. https://doi.org/10.17977/um044v9i12024p67-74
Rahman, S., Jamee, S. muhammad H., Rafi, J. K., Juthi, J. S., Sajib, A. A., & Uddin, J. (2024). Real-time smoke and fire detection using you only look once v8-based advanced computer vision and deep learning. International Journal of Advances in Applied Sciences, 13(4), 987. https://doi.org/10.11591/ijaas.v13.i4.pp987-999
Santos, C., Aguiar, M., Welfer, D., & Belloni, B. (2022). A New Approach for Detecting Fundus Lesions Using Image Processing and Deep Neural Network Architecture Based on YOLO Model. Sensors, 22(17), 6441. https://doi.org/10.3390/s22176441
Saputra, D. A., Istiadi, I., & Rahman, A. Y. (2024). Deteksi Kesegeran Ikan Layur Berdasarkan Citra Mata Menggunakan YOLOv8. JATI (Jurnal Mahasiswa Teknik Informatika), 8(5), 10263–10270. https://doi.org/10.36040/jati.v8i5.11020
Sukardjo, M., Oktaviani, V., Tawari, S., Alfajar, I., & Ichsan, I. Z. (2023). Design of Control System Trainer Based on IoT as Electronic Learning Media for Natural Science Course. Jurnal Penelitian Pendidikan IPA, 9(2), 952–958. https://doi.org/10.29303/jppipa.v9i2.3097
Teed, J. A., Robichaud, M. O., Duren, M., Gouda, H. N., & Kennedy, R. D. (2024). State of the literature discussing smoke-free policies globally: A narrative review. Tobacco Induced Diseases, 22(January), 1–17. https://doi.org/10.18332/tid/174781
Terven, J., Córdova-Esparza, D.-M., & Romero-González, J.-A. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Machine Learning and Knowledge Extraction, 5(4), 1680–1716. https://doi.org/10.3390/make5040083
Topan-Indra, A., Harmadi, H., & Marzuki, M. (2023). Prototype of Forest and Land Fire Monitoring and Detection System Using IoT-Based WSN Technology. Jurnal Penelitian Pendidikan IPA, 9(12), 11837–11845. https://doi.org/10.29303/jppipa.v9i12.5736
Ulfah, N. H., Ratih, S. P., Humairo, M. V., Laksana, D. P., Prasojo, I. B., & Aji, L. P. E. W. (2024). Upaya Peningkatan Perilaku Hidup Sehat melalui Program Community-Led Total Sanitation kepada Masyarakat Desa Tumpang, Malang. Warta LPM, 372–379. https://doi.org/10.23917/warta.v27i2.4205
Wang, Z., Lei, L., & Shi, P. (2023). Smoking behavior detection algorithm based on YOLOv8-MNC. Frontiers in Computational Neuroscience, 17. https://doi.org/10.3389/fncom.2023.1243779
Wang, Z., Liu, Y., Lei, L., & Shi, P. (2024). Smoking-YOLOv8: a novel smoking detection algorithm for chemical plant personnel. Pattern Analysis and Applications, 27(3), 72. https://doi.org/10.1007/s10044-024-01288-7
Yang, G., Wang, J., Nie, Z., Yang, H., & Yu, S. (2023). A Lightweight YOLOv8 Tomato Detection Algorithm Combining Feature Enhancement and Attention. Agronomy, 13(7), 1824. https://doi.org/10.3390/agronomy13071824
Yao, G., Zhu, S., Zhang, L., & Qi, M. (2024). HP-YOLOv8: High-Precision Small Object Detection Algorithm for Remote Sensing Images. Sensors, 24(15), 4858. https://doi.org/10.3390/s24154858
Yuliswar, T., Elfitri, I., & W purbo, O. (2025). Optimization of Intrusion Detection System with Machine Learning for Detecting Distributed Attacks on Server. INOVTEK Polbeng - Seri Informatika, 10(1), 367–376. https://doi.org/10.35314/vem9da98
Yunarman, S., Zarkani, A., Walid, A., Ahsan, A., & Kusuma, D. (2020). Compliance with smoke-free policy and challenges in implementation: Evidence from bengkulu, Indonesia. Asian Pacific Journal of Cancer Prevention, 21(9), 2647–2651. https://doi.org/10.31557/APJCP.2020.21.9.2647
Zhang, J., Wei, L., Chen, B., Chen, H., & Xu, W. (2023). Intelligent Recognition of Smoking and Calling Behaviors for Safety Surveillance. Electronics, 12(15), 3225. https://doi.org/10.3390/electronics12153225
Zhang, W., De Ocampo, A. L., & Hernandez, R. (2024). Detection of Smoking Behaviors Using Human Key Points and YOLOv8. 2024 IEEE Cyber Science and Technology Congress (CyberSciTech), 335–340. IEEE. https://doi.org/10.1109/CyberSciTech64112.2024.00059
Zhao, L., Zhi, L., Zhao, C., & Zheng, W. (2022). Fire-YOLO: A Small Target Object Detection Method for Fire Inspection. Sustainability (Switzerland), 14(9), 1–14. https://doi.org/10.3390/su14094930
Author Biographies
Salsabilla Azahra Putri, Universitas Ahmad Dahlan
Murinto, Universitas Ahmad Dahlan
Sunardi, Universitas Ahmad Dahlan
License
Copyright (c) 2025 Salsabilla Azahra Putri, Murinto, Sunardi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).