In Silico Evaluation of the Glioma Activity of Reported Compounds from the Extract Rhodomyrtus tomentosa (Aiton) Hassk.)
DOI:
10.29303/jppipa.v11i6.10809Published:
2025-06-25Issue:
Vol. 11 No. 6 (2025): JuneKeywords:
Glioma, Molecular docking, Recepto smoothened, Rhodomyrtus tomentosaResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
The plant Rhodomyrtus tomentosa is empirically treated and can be developed in vitro as an anticancer. To see the interaction and evaluate the compound of Rhodomyrtus tomentosa as glioma inhibition, especially on Smoothened receptor by using the in silico. 44 compounds from Rhodomyrtus tomentosa leaf plants obtained from previous studies and native ligands and target proteins were generated through PubChem and RSCB protein database. In silico analysis was performed using various, absorption, distribution, toxicity prediction, and molecular tethering of compounds to smoothened (SMO) target proteins. Drug similarity showed that most of the compounds conformed to Lipinski's rule. The absorption and Distribution analysis of the compounds for each parameter gave different pharmacokinetic profiles according to the physicochemical properties of the compounds. Quercetin, β-sitosterol, and Quercetrin are prediction mutagenic, and Rhodomyrtoxin C and β-amyrenonol compounds are What follows is a prediction genotoxic carcinogenic. The results of docking analysis showed that the leaf compounds of Rhodomyrtus tomentosa leaf compounds that can interact with SMO receptors with the best interaction shown by compound 13 (Rhodomyrtoxin C) with a free bond energy of -9.29 kcal/mol, Quercitrin of-12.72 kcal/mol, 2-(4-hydroxyphenyl)acetic acid -14.24 kcal/mol and β-Sitosterol of -11,61 kcal/mol and has the same key amino acid residues as the native ligand LY2940680 (4-fluro-N-methyl-N-{1-[4-(1-methyl-1H-pyrazol-5-yl)phthalazine-1yl]piperidin-4-yl} 2 (trifluoromethyl) benzamide )namely Arg400, Asp473 and Glu518. His470, and Asn521. Specific compounds from Rhodomyrtus tomentosa are predicted to be developed as candidates for glioma inhibitors predicted to have the same mechanism of action as Smoothened inhibitors and further research is needed.
References
Abidi, A. (2014). Hedgehog Signaling Pathway: A Novel Target for Cancer Therapy: Vismodegib, a Promising Therapeutic Option in Treatment of Basal Cell Carcinomas. Indian Journal of Pharmacology, 46(1), 3-12. https://doi.org/10.4103/0253-7613.124884
Abla, M. J., & Banga, A. K. (2013). Quantification of Skin Penetration of Antioxidants of Varying Lipophilicity. International Journal of Cosmetic Science, 35(1), 19-26. https://doi.org/10.1111/j.1468-2494.2012.00728.x
Adianingsih, O. R., Khasanah, U., Anandhy, K. D., & Yurina, V. (2022). In Silico ADME-T and Molecular Docking Study of Phytoconstituents from Tithonia diversifolia (Hemsl.) A. Gray on Various Targets of Diabetic Nephropathy. J Pharm Pharmacogn Res, 10(4), 571-594. http://dx.doi.org/10.56499/jppres22.1345.10.4.571
Aisyah, A. N., Lukitaningsih, E., Rumiyati, R., Marwati, M., Sapra, A., Khairi, N., Fadri, A., & Nur, S. (2022). In Vitro Antioxidant and Cytotoxic Evaluation of Ethyl Acetate Fraction of Angiopteris ferox Copel Tuber Against HTB Lung Cancer Cell. Egyptian Journal of Chemistry, 65(11), 41-48. https://doi.org/10.21608/ejchem.2022.91843.4364
Amendola, G., Maio, D. D., Pietra, V. L., & Cosconati, S. (2016). Best Matching Protein Conformations and Docking Programs for a Virtual Screening Campaign Against SMO Receptor. Molecular Informatics, 35(8-9), 340-349. https://doi.org/10.1002/minf.201501021
Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat, J., Gralow, J. R., Cardoso, F., Siesling, S., & Soerjomataram, I. (2022). Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. The Breast, 66, 15–23. https://doi.org/10.1016/j.breast.2022.08.010
Benigni, R. (2008). The Benigni/Bossa Rulebase for Mutagenicity and Carcinogenicity–A Module of Toxtree. EUR 23241 EN. Luxembourg: OPOCE.
Desai, N., Rana, D., Salave, S., Gupta, R., Patel, P., Karunakaran, B., & Kommineni, N. (2023). Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics, 15(4), 1313. https://doi.org/10.3390/pharmaceutics15041313
Gao, Y., Gesenberg, C., & Zheng, W. (2017). Oral Formulations for Preclinical Studies: Principle, Design, and Development Considerations. Developing Solid Oral Dosage Forms (pp. 455-495). Academic Press.
Hamid, M. R. A., Sami, W., & Sidek, M. M. (2017). Discriminant Validity Assessment: Use of Fornell & Larcker Criterion versus HTMT Criterion. Journal of Physics: Conference Series, 890, 012163. https://doi.org/10.1088/1742-6596/890/1/012163
Han, Y., Zhang, J., Hu, C. Q., Zhang, X., Ma, B., & Zhang, P. (2019). In Silico ADME and Toxicity Prediction of Ceftazidime and Its Impurities. Frontiers in Pharmacology, 10, 434. https://doi.org/10.3389/fphar.2019.00434
Hiranrat, A., & Mahabusarakam, W. (2008). New Acylphloroglucinols from the Leaves of Rhodomyrtus tomentosa. Tetrahedron, 64(49), 11193-11197. https://doi.org/10.1016/j.tet.2008.09.054
Hiranrat, A., Chitbankluoi, W., Mahabusarakam, W., Limsuwan, S., & Voravuthikunchai, S. P. (2012a). A New Flavellagic Acid Derivative and Phloroglucinol from Rhodomyrtus tomentosa. Natural Product Research, 26(20), 1904-1909. https://doi.org/10.1080/14786419.2011.628666
Hiranrat, A., Mahabusarakam, W., Carroll, A. R., Duffy, S., & Avery, V. M. (2012b). Tomentosones A and B, Hexacyclic Phloroglucinol Derivatives from the Thai Shrub Rhodomyrtus tomentosa. The Journal of Organic Chemistry, 77(1), 680-683. https://doi.org/10.1021/jo201602y
Hiranrat, W., Hiranrat, A., & Mahabusarakam, W. (2017). Rhodomyrtosones G and H, Minor Phloroglucinols from the Leaves of Rhodomyrtus tomentosa. Phytochemistry Letters, 21, 25-28. https://doi.org/10.1016/j.phytol.2017.05.013
Khotimah, H., Setiawan, A., Rita, C. I., Mardiyah, M., Ali, A., Sukatman, M. P., ... & Sujuti, H. (2021). In Silico Studies of Natural Compounds of Centella asiatica as Anti-Aging and Wound Healing Agents. AIP Conference Proceedings, 2353(1), 030031. http://dx.doi.org/10.1063/5.0053016
Kufareva, I., & Abagyan, R. (2012). Methods of Protein Structure Comparison. Methods in Molecular Biology, 857, 231–257. https://doi.org/10.1007/978-1-61779-588-6_10
Lipinski, C. A. (2004). Lead-and Drug-Like Compounds: The Rule-of-Five Revolution. Drug Discovery Today: Technologies, 1(4), 337-341. https://doi.org/10.1016/j.ddtec.2004.11.007
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
Liu, G. L., Guo, H. H., & Sun, Y. M. (2012). Optimization of the Extraction of Anthocyanins from the Fruit Skin of Rhodomyrtus tomentosa (Ait.) Hassk and Identification of Anthocyanins in the Extract Using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS). International Journal of Molecular Sciences, 13(5), 6292-6302. https://doi.org/10.3390/ijms13056292
Marwati, M., Salampe, M., Burhan, A., Ma, A. A., Naneng, N., Aridj, A., & Oktaviani, N. (2020). Skrining Antioksidan dan Antikanker Ekstrak Etanol Daun Karamunting (Rhonomyrtus tomentosa L.) sebagai Obat Alternatif. Jurnal Ilmiah Manuntung, 6(2). Retrieved from https://jurnal.stiksam.ac.id/index.php/jim/article/view/367
McCann, J., & Ames, B. N. (1976). Detection of Carcinogens as Mutagens in the Salmonella/Microsome Test: Assay of 300 Chemicals: Discussion. Proceedings of the National Academy of Sciences of the United States of America, 73(3), 950–954. https://doi.org/10.1073/pnas.73.3.950
Nur, S., Aisyah, A. N., Lukitaningsih, E., Juhardi, R. I., Andirah, R., & Hajar, A. S. (2021). Evaluation of Antioxidant and Cytotoxic Effect Against Cancer Cells Line of Angiopteris ferox Copel Tuber and Its Compounds by LC-MS Analysis. Journal of Applied Pharmaceutical Science, 11(8), 054-061. https://dx.doi.org/10.7324/JAPS.2021.110808
Nur, S., Febrina, E., Asnawi, A., & Syafiie, S. (2022). Synthesis and Inhibitory Activity of Curculigoside a Derivatives as Potential Anti-Diabetic Agents with β-Cell Apoptosis. Journal of Molecular Structure, 1265, 133292. https://doi.org/10.1016/j.molstruc.2022.133292
Nur, S., Hanafi, M., Setiawan, H., & Elya, B. (2024). Chemical Characterization and Biological Activity of Molineria latifolia Root Extract as Dermal Antiaging: Isolation of Natural Compounds, in Silico and in Vitro Study. Biocatalysis and Agricultural Biotechnology, 56, 103039. https://doi.org/10.1016/j.bcab.2024.103039
Nur, S., Hanafi, M., Setiawan, H., Nursamsiar, N., & Elya, B. (2023a). Molecular Docking Simulation of Reported Phytochemical Compounds from Curculigo latifolia Extract on Target Proteins Related to Skin Antiaging. Tropical Journal of Natural Product Research, 7(11). https://doi.org/10.26538/tjnpr/v7i11.9
Nur, S., Hanafi, M., Setiawan, H., Nursamsiar, N., & Elya, B. (2023c). In Silico Evaluation of the Dermal Antiaging Activity of Molineria latifolia (Dryand. ex WT Aiton) Herb. Ex Kurz Compounds. Journal of Pharmacy & Pharmacognosy Research, 11(2), 325-345. https://doi.org/10.56499/jppres23.1606_11.2.325
Nur, S., Setiawan, H., Hanafi, M., & Elya, B. (2023b). Phytochemical Composition, Antioxidant, in Vitro and in Silico Studies of Active Compounds of Curculigo latifolia Extracts as Promising Elastase Inhibitor. Saudi Journal of Biological Sciences, 30(8), 103716. https://doi.org/10.1016/j.sjbs.2023.103716
Nursamsiar, N., Mangande, M. M., Awaluddin, A., Nur, S., & Asnawi, A. (2020a). In Silico Study of Aglycon Curculigoside A and Its Derivatives as α-Amilase Inhibitors. Indonesian Journal of Pharmaceutical Science and Technology, 7(1), 29-37. https://doi.org/10.24198/ijpst.v7i1.23062
Nursamsiar, N., Siregar, M., Awaluddin, A., Nurnahari, N., Nur, S., Febrina, E., & Asnawi, A. (2020b). Molecular Docking and Molecular Dynamic Simulation of The Aglycone of Curculigoside A and Its Derivatives as Alpha Glucosidase Inhibitors. Rasayan Journal of Chemistry, 13(1). http://dx.doi.org/10.31788/RJC.2020.1315577
Pratami, M. P., Fendiyanto, M. H., Satrio, R. D., Nikmah, I. A., Awwanah, M., Farah, N., & Sari, N. I. P. (2022). In-Silico Genome Editing Identification and Functional Protein Change of Chlamydomonas reinhardtii Acetyl-CoA Carboxylase (CrACCase). Jordan Journal of Biological Sciences, 15(3), 431-440. Retrieved from https://jjbs.hu.edu.jo/files/vol15/n3/Paper%20Number%2012.pdf
Riwu, A. G., Nugraha, J., Purwanto, D. A., & Triyono, E. A. (2022). Análisis in Silico de la Actividad Anti-Dengue de Compuestos de Corteza de Tallo de Faloak (Sterculia quadrifida R. Br.). Journal of Pharmacy and Pharmacognosy Research, 10(6), 1006-1014. https://doi.org/10.56499/jppres22.1445_10.6.1006
Singh, A. N., Baruah, M. M., & Sharma, N. (2017). Structure Based Docking Studies Towards Exploring Potential Anti-Androgen Activity of Selected Phytochemicals Against Prostate Cancer. Scientific Reports, 7(1), 1955. https://doi.org/10.1038/s41598-017-02023-5
Skoda, A. M., Simovic, D., Karin, V., Kardum, V., Vranic, S., & Serman, L. (2018). The Role of the Hedgehog Signaling Pathway in Cancer: A Comprehensive Review. Bosnian Journal of Basic Medical Sciences, 18(1), 8–20. https://doi.org/10.17305/bjbms.2018.2756
Sun, L., Yang, H., Li, J., Wang, T., Li, W., Liu, G., & Tang, Y. (2018). In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models. ChemMedChem, 13(6), 572-581. https://doi.org/10.1002/cmdc.201700582
Wang, C., Wu, H., Katritch, V., Han, G. W., Huang, X. P., Liu, W., Siu, F. Y., Roth, B. L., Cherezov, V., & Stevens, R. C. (2013). Structure of the Human Smoothened Receptor Bound to an Antitumour Agent. Nature, 497(7449), 338–343. https://doi.org/10.1038/nature12167
WHO. (2020). Latest Global Cancer Data: Cancer Burden Rises to 19.3 Million New Cases and 10.0 Million Cancer Deaths in 2020. Retrieved from https://www.iarc.who.int/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/
Wong, S. E., & Lightstone, F. C. (2011). Accounting for Water Molecules in Drug Design. Expert Opinion on Drug Discovery, 6(1), 65–74. https://doi.org/10.1517/17460441.2011.534452
Zhao, Z., Wu, L., Xie, J., Feng, Y., Tian, J., He, X., ... & Zheng, X. (2020). Rhodomyrtus tomentosa (Aiton.): A Review of Phytochemistry, Pharmacology and Industrial Applications Research Progress. Food Chemistry, 309, 125715. https://doi.org/10.1016/j.foodchem.2019.125715
Author Biographies
Marwati Marwati, Almarisah Madani University
Gemini Alam, Hasanuddin University
Risfah Yulianty, Hasanuddin University
Fitriyanti J. Sami, Almarisah Madani University
Syamsu Nur, Almarisah Madani University
Nursamsiar, Almarisah Madani University
Yusnita Rifai, Hasanuddin University
License
Copyright (c) 2025 Marwati Marwati, Gemini Alam, Risfah Yulianty, Fitriyanti J. Sami, Syamsu Nur, Nursamsiar, Yusnita Rifai

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).