Vol. 11 No. 6 (2025): June
Open Access
Peer Reviewed

Analysis of the Relationship between Brain Waves and Learning Readiness of Students with Disabilities Using Electroencephalography (EEG) Signals

Authors

Tining Haryanti , Amirul Haq , Rina

DOI:

10.29303/jppipa.v11i6.11013

Published:

2025-06-25

Downloads

Abstract

This study aims to analyze the relationship between brainwave activity and the learning readiness of students with disabilities by utilizing EEG (Electroencephalography) signals. EEG signals are used to detect the brain's electrical activity that reflects mental states, including focus, concentration, and readiness to receive learning. This study was conducted at SLB 'Aisyiyah Krian with a quantitative approach through EEG signal measurement before and during the learning process. The results showed a significant correlation between the dominance of alpha and beta waves with learning readiness, while the dominance of theta and delta waves indicated unpreparedness. These findings provide a foundation for the development of a more inclusive, objective, and adaptive neurotechnology-based learning approach for students with disabilities.

Keywords:

Disabilities Electroencephalography Inclusive Education Learning Readiness Neurotechnology

References

Almaiah, M. A., & Jalil, M. A. (2014). Investigating students’ perceptions on mobile learning services. International Journal of Interactive Mobile Technologies, 8(4). https://doi.org/10.3991/ijim.v8i4.3965

Amini, M., Pedram, M. M., Moradi, A. R., & Ouchani, M. (2021). Diagnosis of Alzheimer’s Disease by Time-Dependent Power Spectrum Descriptors and Convolutional Neural Network Using EEG Signal. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2021/5511922

Baker, M., Akrofi, K., Schiffer, R., & Boyle, M. W. O. (2008). EEG Patterns in Mild Cognitive Impairment (MCI) Patients. The Open Neuroimaging Journal, 2. https://doi.org/10.2174/1874440000802010052

Francis, J. J., Johnston, M., Robertson, C., Glidewell, L., Entwistle, V., Eccles, M. P., & Grimshaw, J. M. (2010). What is an adequate sample size? Operationalising data saturation for theory-based interview studies. Psychology and Health, 25(10). https://doi.org/10.1080/08870440903194015

Haq, M. A., Huy, L. N. Q., Ridlwan, M., & Naila, I. (2024). Leveraging Self-Attention Mechanism for Deep Learning in Hand-Gesture Recognition System. E3S Web of Conferences, 500. https://doi.org/10.1051/e3sconf/202450001009

Haryanti, T. (2020). Document Management System and Reminder using SMS Gateway. IOP Conference Series, 469 (Earth and Environmental Science), 1–7. https://doi.org/10.1088/1755-1315/469/1/012088

Haryanti, T., Haq, M. A., Wijaya, S. D., Oktaviani, M., Fayyadh, A., Firmansyah, H., & Emira. (2024). The Screening of Learning Readiness of Students with Disabilities at SLB Aisyiah Krian Sidoarjo using Electroencephalography (EEG. JURNAL PENGABDIAN KEPADA MASYARAKAT, 14(2), 309–313. https://doi.org/10.30999/jpkm.v14i2.3352

Haryanti, T., & Pribadi, A. (2019). E-Commerce Service Design Readiness using ITIL framework with IT Balanced Scorecard Objective (Case Study: University E-Commerce. Procedia Computer Science, 161, 283–290. https://doi.org/10.1016/j.procs.2019.11.125

Haryanti, T., Rakhmawati, N. A., & Subriadi, A. (2022). The Design Science Research Methodology (DSRM) for Self-Assessing Digital Transformation Maturity Index in Indonesia. 2022 IEEE 7th International Conference on Information Technology and Digital Applications (ICITDA. Retrieved from https://ieeexplore.ieee.org/abstract/document/9971171

Haryanti, T., Rakhmawati, N. A., & Subriadi, A. P. (2023a). Journal of Industrial Engineering and Management A Comparative Analysis Review of Digital Transformation Stage in Developing Countries. Journal of Industrial Engineering and Management, 16(1), 150–167. https://doi.org/10.3926/jiem.4576

Haryanti, T., Rakhmawati, N. A., & Subriadi, A. P. (2023b). Measuring the digital transformation maturity level independently with the design science research methodology. Systems Engineering. https://doi.org/10.1002/sys.21714

Haryanti, T., Rakhmawati, N. A., & Subriadi, A. P. (2023c). The Extended Digital Maturity Model. Big Data and Cognitive Computing, 7(1). https://doi.org/10.3390/bdcc7010017

Haryanti, T., & Subriadi, A. P. (2021). E-commerce acceptance in the dimension of sustainability. Journal of Modelling in Management. https://doi.org/10.1108/JM2-05-2020-0141

Hennink, M. M., Kaiser, B. N., & Marconi, V. C. (2017). Code Saturation Versus Meaning Saturation: How Many Interviews Are Enough? Qualitative Health Research, 27(4). https://doi.org/10.1177/1049732316665344

Hidayat, A. A. A., Uliyah, M., & Haryanti, T. (2023). Mobile nursing care plan information system for nursing service in hospitals. European Review for Medical and Pharmacological Sciences, 27(1). https://doi.org/10.26355/eurrev_202301_30848

Honcharenko, W., Kruys, J. P., Lee, D. Y., & Shah, N. J. (1997). Broadband wireless access. IEEE Communications Magazine. https://doi.org/10.1109/35.568192

June, S., Yaacob, A., & Kheng, Y. K. (2014). Assessing the use of youtube videos and interactive activities as a critical thinking stimulator for tertiary students: An action research. International Education Studies. https://doi.org/10.5539/ies.v7n8p56

Kusumo, N. S. A. M., Kurniawan, F. B., & Putri, N. I. (2012). eLearning Obstacle Faced by Indonesian Students. Nternational Journal of The Computer, The Internet, and Management, 20(1). Retrieved from https://shorturl.asia/Q27kG

Lehne, M., Engel, P., Rohrmeier, M., Menninghaus, W., Jacobs, M., A., & Koelsch, S. (2015). Reading a Suspenseful Literary Text Activates Brain Areas Related to Social Cognition and Predictive Inference. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone.0124550

Mackay, S., Wright, E., Park, J., & Reynders, D. (2003). Understanding Wireless Fundamental. In Practical Industrial Data Networks: Design, Installation and Troubleshooting (1st ed., pp. 291–292). Elsevier Science Publishers B. V. https://doi.org/10.1016/b978-0-7506-5807-2.x5024-9

Marco, D., Dolara, A., Longo, M., & Yaïci, W. (2019). Design and Performance Analysis of Pads for Dynamic Wireless Charging of EVs using the Finite Element Method. Energies, 12(21), 4139. https://doi.org/10.3390/en12214139

Matalatala, M., Deruyck, M., Shikhantsov, S., Tanghe, E., Plets, D., Goudos, S., Psannis, K. E., Martens, L., & Joseph, W. (2019). Multi-Objective Optimization of Massive MIMO 5G Wireless Networks towards Power Consumption, Uplink and Downlink Exposure. Applied Sciences, 9(22), 4974. https://doi.org/10.3390/app9224974

Nagy, S., & Somosi, M. V. (2022). The relationship between social innovation and digital economy and society. Regional Statistics, 12(2). https://doi.org/10.15196/RS120202

Nasution, P., & Andriana, S. D. (2016). Aplikasi Pembelajaran Berbasis Mobile Untuk Tuna Aksara. MATICS. https://doi.org/10.18860/mat.v8i1.3475

Neto, M. (2015). Journal of Student Engagement: Education Matters Educational motivation meets Maslow: Self- actualisation as contextual driver. Journal of Student Engagement: Education Matters, 5(1), 18–27. Retrieved from http://ro.uow.edu.au/jseemhttp://ro.uow.edu.au/jseem/vol5/iss1/4

Nosratabadi, S., Atobishi, T., & Hegedűs, S. (2023). Social Sustainability of Digital Transformation: Empirical Evidence from EU-27 Countries. Administrative Sciences, 13(5). https://doi.org/10.3390/admsci13050126

Nugroho, K. A., Amirul Haq, M., Wang, C. K., Ruan, S. J., Polikarpov, M., Wagstyl, D., & Deuse, J. (2023). Towards Smart Manufacturing using Reinforcement Learning in a Sparse-Rewarded Environment for Through-Hole Technology. GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics. https://doi.org/10.1109/GCCE59613.2023.10315655

O’Brien, E. M., & Deans, K. R. (1996). Educational supply chain: A tool for strategic planning in tertiary education? Marketing Intelligence & Planning, 14(2), 33–40. https://doi.org/10.1108/02634509610110787

Rachman, A., Rusandi, M. A., & Setiawan, M. A. (2020). Effect of Phubbing Behavior on Student Academic Procrastination. PSIKOPEDAGOGIA Jurnal Bimbingan Dan Konseling, 8(1). https://doi.org/10.12928/psikopedagogia.v8i1.17895

Serditova, N. E., & Belotserkovsky, A. V. (2020). Education, quality and the digital transformation. Vysshee Obrazovanie v Rossii, 29(4). https://doi.org/10.31992/0869-3617-2020-29-4-9-15

Syaifurrohman, S., & Nasution, F. A. (2021). Optimalisasi Pendidikan Politik melalui Literasi Digital bagi Penyandang Disabilitas dalam Industri 4.0 di Indonesia. Jurnal Komunikasi Pendidikan, 5(1). https://doi.org/10.32585/jkp.v5i1.800

Teplan, M. (2002). Fundamentals of EEG measurement. Measurement Science Review, 2(2). Retrieved from http://www.edumed.org.br/cursos/neurociencia/MethodsEEGMeasurement.pdf

Vicchietti, M. L., Ramos, F. M., Betting, L. E., & Campanharo, A. S. L. O. (2023). Computational methods of EEG signals analysis for Alzheimer’s disease classification. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-32664-8

Author Biographies

Tining Haryanti, Universitas Muhammadiyah Surabaya

Author Origin : Indonesia

Amirul Haq, Universitas Muhammadiyah Surabaya

Author Origin : Indonesia

Rina, SLB Aisyiah

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Haryanti, T., Haq, A., & Rina. (2025). Analysis of the Relationship between Brain Waves and Learning Readiness of Students with Disabilities Using Electroencephalography (EEG) Signals . Jurnal Penelitian Pendidikan IPA, 11(6), 130–137. https://doi.org/10.29303/jppipa.v11i6.11013