Secondary Metabolites and Antioxidant Properties of Lichens from Sicike-Cike Nature Park, North Sumatra

Authors

Putri Amelia Lubis , Etti Sartina Siregar , Isnaini Nurwahyuni

DOI:

10.29303/jppipa.v11i4.11042

Published:

2025-04-25

Issue:

Vol. 11 No. 4 (2025): April

Keywords:

Antioxidant, Lichen, Phytochemical, Sicike-Cike Nature Park

Research Articles

Downloads

How to Cite

Lubis, P. A., Siregar, E. S., & Nurwahyuni, I. (2025). Secondary Metabolites and Antioxidant Properties of Lichens from Sicike-Cike Nature Park, North Sumatra. Jurnal Penelitian Pendidikan IPA, 11(4), 209–215. https://doi.org/10.29303/jppipa.v11i4.11042

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

This study aimed to evaluate the phytochemical composition and antioxidant activity of five lichen species Cladonia portentosaCladonia rapiiLetharia vulpinaParmotrema hypotropum, and Usnea trichodea collected from Sicike-Cike Nature Park, North Sumatra, Indonesia. Methanol extracts were prepared from dried and powdered lichen samples. Qualitative phytochemical screening using specific reagents identified the presence of alkaloids, flavonoids, tannins, saponins, terpenoids/steroids, and glycosides in varying levels among the species. Antioxidant activity was assessed using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, with IC50 values ranging from 42.3244 µg/mL to 86.7479 µg/mL. Parmotrema hypotropum demonstrated the strongest antioxidant activity (IC50 = 42.3244 µg/mL), categorized as moderate based on literature benchmarks. The strong activity is likely due to the presence of alkaloids, flavonoids, and saponins. In contrast, Usnea trichodea showed the weakest activity. These results suggest that certain lichens, especially Parmotrema hypotropum, may serve as promising sources of natural antioxidants. The findings support potential applications in pharmaceutical formulations and natural cosmetic products, particularly those targeting oxidative stress. Future studies should focus on isolating dominant compounds such as usnic acid or flavonoid derivatives and further exploring their bioactivity profiles.

References

Atni, O. K., Munir, E., Siregar, E. S., & Saleh, M. N. (2025). Antimicrobial and antioxidant properties of the lichens Coccocarpia palmicola, Parmotrema clavuliferum and Parmotrema tinctorum. IOP Conference Series: Earth and Environmental Science, 1445(1), 12024. https://doi.org/10.1088/1755-1315/1445/1/012024

Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047

Chen, Z., Świsłocka, R., Choińska, R., Marszałek, K., Dkabrowska, A., Lewandowski, W., & Lewandowska, H. (2024). Exploring the correlation between the molecular structure and biological activities of metal--phenolic compound complexes: research and description of the role of metal ions in improving the antioxidant activities of phenolic compounds. International Journal of Molecular Sciences, 25(21), 11775. https://doi.org/10.3390/ijms252111775

Dalimunthe, A., Hasibuan, P. A. Z., Silalahi, J., Sinaga, S. F., & Satria, D. (2018). Antioxidant activity of alkaloid compounds from Litsea cubeba Lour. Oriental Journal of Chemistry, 34(2), 1149. https://doi.org/10.13005/ojc/340270

Elečko, J., Vilková, M., Frenák, R., Routray, D., Ručová, D., Bačkor, M., & Goga, M. (2022). A comparative study of isolated secondary metabolites from lichens and their antioxidative properties. Plants, 11(8), 1077. https://doi.org/10.3390/plants11081077

Elkhateeb, W. A., Somasekhar, T., Thomas, P. W., Wen, T.-C., & Daba, G. M. (2021). Mycorrhiza and lichens as two models of fungal symbiosis. Journal of Microbiology, Biotechnology and Food Sciences, 11(3). Retrieved from https://dspace.stir.ac.uk/handle/1893/33754

Fahmi, M. H., Siregar, E. S., & Aththorick, T. A. (2024). Types of lichen at Tenggulun Restoration Station, Leuser Ecosystem Area (LEA), Aceh Tamiang, Aceh Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 1352(1), 12064. https://doi.org/10.1088/1755-1315/1352/1/012064

Fahmy, S. A., Issa, M. Y., Saleh, B. M., Meselhy, M. R., & Azzazy, H. M. E.-S. (2021). Peganum harmala alkaloids self-assembled supramolecular nanocapsules with enhanced antioxidant and cytotoxic activities. ACS Omega, 6(18), 11954–11963. https://doi.org/10.1021/acsomega.1c00455

Fatima, G., Magomedova, A., & Parvez, S. (2024). Biotechnology and sustainable development. Shineeks Publishers.

Hassanpour, S. H., & Doroudi, A. (2023). Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna Journal of Phytomedicine, 13(4), 354. https://doi.org/10.22038/AJP.2023.21774

Huneck, S. (1999). The significance of lichens and their metabolites. Die Naturwissenschaften, 86(12), 559–570. https://doi.org/10.1007/s001140050676

Jun, M., Fu, H.-Y., Hong, J., Wan, X., Yang, C. S., & Ho, C.-T. (2003). Comparison of antioxidant activities of isoflavones from kudzu root (Pueraria lobata Ohwi). Journal of Food Science, 68(6), 2117–2122. https://doi.org/10.1111/j.1365-2621.2003.tb07029.x

Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J.-P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954–3962. https://doi.org/10.1021/JF990146L

Khalid, W., ul Rasool, I. F., Hanif, H., Arshad, M. S., Afzal, F., & ul Rasul, H. F. (2024). Emerging Non-thermal Food Preservation Techniques. In Novel Approach to Sustainable Temperate Horticulture (pp. 192–211). CRC Press. https://doi.org/10.1201/9781003412489-8

Khan, S. A., & Chaudhary, M. (2024). Introduction to extraction and antioxidant activity of alkaloids. Jabirian Journal of Biointerface Research in Pharmaceutics and Applied Chemistry, 1(1), 8–17. Retrieved from https://sprinpub.com/jabirian/article/view/jabirian-1-1-2-8-17

Lobiuc, A., Pavăl, N.-E., Mangalagiu, I. I., Gheorghiță, R., Teliban, G.-C., Amăriucăi-Mantu, D., & Stoleru, V. (2023). Future antimicrobials: Natural and functionalized phenolics. Molecules, 28(3), 1114. https://doi.org/10.3390/molecules28031114

Nagar, S., Pigott, M., Kukula-Koch, W., & Sheridan, H. (2023). Unravelling novel phytochemicals and anticholinesterase activity in Irish cladonia portentosa. Molecules, 28(10), 4145. https://doi.org/10.3390/molecules28104145

Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., & Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8), 1984. https://doi.org/10.3390/ma14081984

Ramadhanty, Z. F., Kurnia, D., Situmeang, B., Hemiawati, M., & Asmah, N. (2023). Antibacterial and Antioxidant Superoxide Anion Radical Inhibitors from Myrmecodia pendans: An In silico Study. The Natural Products Journal, 13(8), 2–12. https://doi.org/10.2174/2210315513666230223094232

Ren, M., Jiang, S., Wang, Y., Pan, X., Pan, F., & Wei, X. (2023). Discovery and excavation of lichen bioactive natural products. Frontiers in Microbiology, 14, 1177123. https://doi.org/10.3389/fmicb.2023.1177123

Rice-Evans, C. (1999). Screening of phenolics and flavonoids for antioxidant activity. In Antioxidant food supplements in human health (pp. 239–253). Elsevier. https://doi.org/10.1016/B978-012543590-1/50017-2

Shahidi, F. (1997). Natural antioxidants: chemistry, health effects, and applications. The American Oil Chemists Society.

Silva, A., Silva, V., Igrejas, G., Aires, A., Falco, V., Valentão, P., & Poeta, P. (2023). Phenolic compounds classification and their distribution in winemaking by-products. European Food Research and Technology, 249(2), 207–239. https://doi.org/10.1007/s00217-022-04163-z

Spribille, T., Resl, P., Stanton, D. E., & Tagirdzhanova, G. (2022). Evolutionary biology of lichen symbioses. New Phytologist, 234(5), 1566–1582. https://doi.org/10.1111/nph.18048

Valsan, A., & Raphael, K. R. (2016). Pharmacognostic profile of Averrhoa bilimbi Linn. leaves. South Indian J. Biol. Sci, 2(1), 75–80. Retrieved from https://shorturl.asia/DSqwo

Zandavar, H., & Babazad, M. A. (2023). Secondary metabolites: Alkaloids and flavonoids in medicinal plants. In Herbs and Spices-New Advances. IntechOpen. https://doi.org/10.5772/intechopen.108030

Author Biographies

Putri Amelia Lubis, Universitas Sumatera Utara

Etti Sartina Siregar, Universitas Sumatera Utara

Isnaini Nurwahyuni, Universitas Sumatera Utara

License

Copyright (c) 2025 Putri Amelia Lubis, Etti Sartina Siregar, Isnaini Nurwahyuni

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).