Vol. 11 No. 7 (2025): July
Open Access
Peer Reviewed

Application of Remote Sensing for Mapping Vegetation Density Using Normalized Difference Vegetation Index (NDVI) in Langsa City Mangrove Forest

Authors

Fuji Attariq Unsha , Saida Rasnovi , Dahlan

DOI:

10.29303/jppipa.v11i7.11530

Published:

2025-07-25

Downloads

Abstract

Mangroves are vital coastal ecosystems that thrive in tidal environments and play a crucial role in biodiversity and shoreline protection. This study aims to assess the vegetation density of the Langsa City Mangrove Forest using the Normalized Difference Vegetation Index (NDVI) derived from Sentinel-2A satellite imagery and analyzed through Geographic Information System (GIS) tools, particularly ArcGIS. NDVI values were categorized into four classes: very low (-0.15–0.34), low (0.35–0.48), medium (0.49–0.61), and high (0.62–0.83). The spatial analysis revealed that 57.2% of the area (approx. 128.5 ha) exhibited high vegetation density, while 24.6% (55.2 ha) showed medium density, and 13.3% (29.9 ha) had low vegetation. Approximately 4.9% (11.0 ha) of the area was classified as very low density, indicating regions with potential for ecological rehabilitation. These findings demonstrate that NDVI is an effective and reliable indicator for monitoring mangrove vegetation health. Routine application of NDVI analysis is essential for supporting sustainable management strategies and long-term conservation planning in coastal forest ecosystems..

Keywords:

GIS Langsa Mangrove NDVI Remote sensing

References

Annisa, A. Y. N., Pribadi, R., & Pratikto, I. (2019). Analysis of Mangrove Forest Area Changes in Brebes and Wanasari Districts, Brebes Regency, Using Landsat Satellite Imagery from 2008, 2013, and 2018. Journal of Marine Research, 8(1): 27–35. https://doi.org/10.14710/jmr.v8i1.24323.

Armanda, A., Mubarak, M., & Elizal, E. (2021). Analysis of land cover changes in mangrove vegetation using landsat image data in Coastal, Sungai Apit District, Siak Regency, Riau Province. Asian Journal of Aquatic Sciences, 4, 154–162. https://doi.org/10.31258/ajoas.4.2.154-162.

Badan Pusat Statistik Kota Langsa. (2023). Kota Langsa Dalam Angka. Badan Pusat Statistik Langsa, Aceh.

Chen Y, Guerschman JP, Cheng Z, You L. (2019). Remote sensing for vegetation monitoring in carbon capture storage regions: A review. JApplTechnol 240: 312-346. https://doi.org/10.1016/j.apenergy.2019.02.027.

Dahlan D, Jaya INS, Saleh MB, Puspaningsih N, Affan M. (2023). Developing a spatial mathematical model for assessing the rate of natural forest changes. Aceh International Journal of Science and Technology 12 (1): 14-24. https://doi.org/10.13170/aijst.12.1.31703 .

Dahlan D, Jaya INS, Saleh MB, Puspaningsih N, Sutekad D. (2023). Typology and deforestation of lowland tropical rain forests. International Journal of Applied Science and Engineering Review (IJASER) 4(1): 32-47. https://doi.org/10.52267/IJASER.2023.4304.

Devara T, Wijayanto, AW. (2021). Machine learning applied to sentinel-2 and landsat-8 multispectral and medium-resolution satellite imagery for the detection of rice production areas in Nganjuk, East Java, Indonesia. International Journal of Remote Sensing and Earth Sciences (IJReSES) 18 (1): 19-32. https://doi.org/10.30536/j.ijreses.2021.v18.a3538.

Dharma, F., Aulia, A., Shubhan, F., & Ridwana, R. (2022). Utilization of Sentinel-2 Imagery with NDVI Method for Mangrove Vegetation Density Change in Indramayu Regency. Jurnal Pendidikan Geografi Undiksha, 10, 155–165.

Eddy S, Dahlianah I, Mahito C, Oktavia M, Utomo B. (2022). Anthropogenic implications for land cover changes and vegetation structure in coastal protected forests. Biodiversity 23 (9): 4473-4481. https://doi.org/10.13057/biodiv/d230913.

Heriyanto N, Silvaliandra V. (2019). Mangrove diversity and carbon stock in Lepar Pongok Islands, South Bangka District. Buletin Plasma Nutfah 25 (2): 123–132. https://doi.org/10.21082/blpn.v25n2.2019.p47-58.

Hidayati IN, Suharyadi R, Danoedoro P. (2019). Exploring spectral index band and vegetation indices for estimating vegetation area. Indonesian Journal of Geography 50 (2): 211–221. https://doi.org/10.22146/ijg.38981.

Karmila D, Jauhari A, Kanti R. (2020). Estimasi nilai cadangan karbon menggunakan analisis NDVI (Normalized Difference Vegetation Index) di KHDTK Universitas Lambung Mangkurat. Jurnal Sylva Scienteae 3 (3): 451-459. https://doi.org/10.20527/jss.v3i3.2178.

Katili AS, Ibrahim M, Zakaria Z. (2017). Degradation level of mangrove forest and its reduction strategy in Tabongo Village, Boalemo District, Gorontalo Province, Indonesia. Asian Journal of Forestry 1 (1): 18-22. https://doi.org/10.13057/asianjfor/r010102.

Kawamuna, A., Suprayogi, A., & Wijaya, A. P. (2017). Analysis of Mangrove Forest Health Based on NDVI Classification Method Using Sentinel-2 Imagery. Jurnal Geodesi Undip, January 2017, 6, 277–284. https://doi.org/10.14710/jgundip.2017.15439.

Mayuftia, R., Hendrarto, B., & Hartoko, A. (2013). Mangrove Damage Level and Carbon Assessment Using NDVI (Normalized Difference Vegetation Index) Satellite Data in Sidodadi Village, Pesawaran Regency, Lampung Province. Management of Aquatic Resources Journal (MAQUARES), 2, 146–154. https://doi.org/10.14710/marj.v2i4.4278.

Nelly C, Rasnovi S, Zumaidar Z. (2020). Mangrove ecosystem suitability for ecotourism management recommendation in Iboih Village–Sabang. In E3S Web of Conferences 151: 1-6. https://doi.org/10.1051/e3sconf/202015101060.

Paembonan RE., Achmad MD., Marus I., Baddu S., Karman A., Najamuddin N., & Ismail F. (2022). Mangrove forests on Ternate Island spatially and temporally. Journal of Archipelagic Marine Science, 5(2), 656-667. https://doi.org/10.46252/jsai-fpik-unipa.2024.Vol.8.No.4.412.

Philiani I., Saputra L., Harvianto L., & Muzaki AA. (2016). Mapping of Mangrove Forest Vegetation Using the NDVI Method. Surya Octagon Interdisciplinary Journal of Technology, 1: 211–222. https://doi.org/10.31219/osf.io/c8k6j.

Pratama, M. I., Delvian, D., & Hartini, K. S. (2016). Vegetation Structure and Carbon Stock of Stands in the Lembah Harau Nature Reserve Forest Area, Lima Puluh Kota, West Sumatra. Peronema Forestry Science Journal, 5, 19–27.

Prayudha B, Ulumuddin YI, Siregar V, Suyarso, Agus SB, Prasetyo LB, Anggraini K, Salatalohi A. (2023). Geomorphological and hydrological changes play a critical role in mangrove forest degradation in a rapidly shrinking lagoon in Indonesia. AACL Bioflux 16 (1): 151–167. https://doi.org/10.1016/j.mex.2024.102778.

Purba, A., Kesumawati, D., Rambe, T. R., & Zuliani, U. S., Parinduri, W. M., Irwanto. (2020). Mangrove Ecosystem Management Considering Water Quality Based on Chemical Properties in Jaring Halus Village. Jurnal Pengabdian Kepada Masyarakat (JPKM), 1, 54–59.

Purwanto, A. (2015). Utilization of Landsat 8 Imagery for Identifying the Normalized Difference Vegetation Index (NDVI) in Silat Hilir District, Kapuas Hulu Regency. Edukasi: Jurnal Pendidikan, 13(1): 27–36. https://doi.org/10.31571/edukasi.v13i1.17.

Purwanto, A. D., Asriningrum, W., Winarso, G., & Parwati, E. (2014). Analysis of Mangrove Distribution and Density Using Landsat 8 Imagery in Segara Anakan, Cilacap. In Proceedings of the 2014 National Remote Sensing Seminar (pp. 232-241). LAPAN.

Rahmadi MT, Yuniastuti E, Suciani A, Harefa MS, Persada AY, Tuhono E. 2023. Threats to mangrove ecosystems and their impact on coastal biodiversity: A study on mangrove management in Langsa City. Indonesian Journal of Earth Sciences 3 (2): 1-14. https://doi.org/10.52562/injoes.2023.627.

Rahmadi MT., Suciani A., & Auliani N. (2020). Analysis of Mangrove Forest Area Changes Using Landsat 8 OLI Imagery in Lubuk Kertang Village, Langkat. Geographical Communication Media, 21(2), 110-119. https://doi.org/10.23887/mkg.v21i2.24197.

Rodiana L., Yulianda F. & Sulistiono. (2019). Suitability and Ecological Carrying Capacity of Mangrove-Based Ecotourism in Teluk Pangpang, Banyuwangi. JFMR-Journal of Fisheries and Marine Research, 3(2): 77–88. https://doi.org/10.21776/ub.jfmr.2019.003.02.10.

Rosalina D, Hawati H, Rombe, KH, Surachmat A, Awaluddin A, Amiluddin M, Asriyanti, A. (2023). Application of remote sensing and GIS for mapping changes in land area and mangrove density in the Kuri Caddi Mangrove tourism, South Sulawesi Province, Indonesia. Biodiversitas Journal of Biological Diversity 24 (2): 1049-1056. https://doi.org/10.13057/biodiv/d240246.

Ruslana ZN & Sulistyowati. (2020). Analysis of vegetation density index for identifying tornado occurrences and potential in Klaten Regency. Megascience 11: 1–12. https://doi.org/10.46824/megasains.v11i02.9.

Sasmito B, Suprayogi A. (2015). Model spasial aliran permukaan dan monitoring tutupan lahan di Kota Semarang. Jurnal Ilmiah Geomatika 21: 1–8. DOI: 10.24895/JIG.2015.21-1.469.

Sasmito SD, Kuzyakov Y, Lubis AA, Murdiyarso D, Hutley LB, Bachri S, Friess DA, Martius C, Borchard N. (2020). Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena 187: 1-11. https://doi.org/10.1016/j.catena.2019.104414.

Senoaji G., & Hidayat MF. (2016). The Role of Mangrove Ecosystems on the Coast of Bengkulu City in Mitigating Global Warming Through Carbon Storage. Journal of Human and Environment, 23(3): 327-333. https://doi.org/10.22146/jml.18806.

Shimu SA, Aktar M., Afjal MI, Nitu AM, Uddin MP, Al Mamun M. (2019). NDVI based change detection in Sundarban Mangrove Forest Using Remote Sensing Data. 4th International Conference on Electrical Information and Communication Technology (EICT 2019 IEEE) 1: 1-5. https://doi.org/10.1109/EICT48899.2019.9068819.

Spencer T, Moller I., & Reef R. (2016). Mangrove Systems and Environments. In Reference Module in Earth Systems and Environmental Sciences. Elsevier, Amsterdam.

Susanti R, Kadarisman Y, Asriwandari H, Putri OA. (2024). The movement of outermost small island community groups in mangrove conservation in the North Rupat District Bengkalis Regency. JHSS (Journal of Humanities and Social Studies) 8 (1): 318-323. https://doi.org/10.33751/jhss.v8i2.9920.

Tampubolon T., Juliani R., & Hutahaean J. (2019). Utilization of Landsat Satellite Imagery to observe environmental change at Sinabung Mountain Area. AISTSSE, 18, 1-7. https://doi.org/10.4108/eai.18-10-2018.2287308.

Widyantara AP, Solihuddin T. (2020). Mapping mangrove land area changes in the probolinggo coast using satellite imagery. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital 17: 75–87. https://doi.org/10.30536/j.pjpdcd.2020.v17.a3216.

Winarso G. 2018. Rapid method for mangrove forest monitoring using remote sensing data. Seminar Nasional Geomatika, 1: 901–910. https://doi.org/10.24895/SNG.2018.3-0.1056.

Wishnuputri S, Withaningsih S, Parikesit P. (2024). Estimation of carbon stock in mixed garden tree stands in Jatigede Subdistrict, Sumedang Regency using NDVI (Normalized Difference Vegetation Index). In E3S Web of Conferences 495: 1-9. https://doi.org/10.1051/e3sconf/202449502005.

Author Biographies

Fuji Attariq Unsha, Syiah Kuala University

Author Origin : Indonesia

Saida Rasnovi, Syiah Kuala University

Author Origin : Indonesia

Dahlan, Syiah Kuala University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Unsha, F. A., Rasnovi, S., & Dahlan. (2025). Application of Remote Sensing for Mapping Vegetation Density Using Normalized Difference Vegetation Index (NDVI) in Langsa City Mangrove Forest. Jurnal Penelitian Pendidikan IPA, 11(7), 738–745. https://doi.org/10.29303/jppipa.v11i7.11530