Ground Validation of GPM IMERG-F Precipitation Products with the Point Rain Gauge Records on the Extreme Rainfall Over a Mountainous Area of Sumatra Island

Authors

Ravidho Ramadhan , Marzuki Marzuki , Helmi Yusnaini , Ayu Putri Ningsih , Hiroyuki Hashiguchi , Toyoshi Shimomai , Mutya Vonnisa , Syarifatul Ulfah , Wiwit Suryanto , Sholihun Sholihun

DOI:

10.29303/jppipa.v8i1.1155

Published:

2022-01-10

Issue:

Vol. 8 No. 1 (2022): January

Keywords:

Ground validation, IMERG-G, Extreme rainfall, Sumatra, Kototabang

Research Articles

Downloads

How to Cite

Ramadhan, R. ., Marzuki, M., Yusnaini, H. ., Ningsih, A. P. ., Hashiguchi, H. ., Shimomai, T. ., … Sholihun, S. . (2022). Ground Validation of GPM IMERG-F Precipitation Products with the Point Rain Gauge Records on the Extreme Rainfall Over a Mountainous Area of Sumatra Island. Jurnal Penelitian Pendidikan IPA, 8(1), 163–170. https://doi.org/10.29303/jppipa.v8i1.1155

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Accurate satellite precipitation estimates over areas of complex topography are still challenging, while such accuracy is of importance to the adoption of satellite data for hydrological applications. This study evaluated the ability of Integrated Multi-satellitE Retrievals for GPM -Final (IMERG) V06 product to observe the extreme rainfall over a mountainous area of Sumatra Island. Fifteen years of optical rain gauge (ORG) observation at Kototabang, West Sumatra, Indonesia (100.32°E, 0.20°S, 865 m above sea level), were used as reference surface measurement. The performance of IMERG-F was evaluated using 13 extreme rain indexes formulated by the Expert Team on Climate Change Detection and Indices (ETCCDI). The IMERG-F overestimated the values of all precipitation amount-based indices (PRCPTOT, R85P, R95P, and R99P), three precipitation frequency-based indices (R1mm, R10mm, R20mm), one precipitation duration-based indices (CWD), and one precipitation intensity-based indices (RX5day). Furthermore, the IMERG-F underestimated the values of precipitation frequency-based indices (R50mm), one precipitation duration-based indices (CDD), one precipitation intensity-based indices (SDII). In terms of correlation, only five indexes have a correlation coefficient (R) > 0.5, consistent with Kling–Gupta Efficiency (KGE) value. These results confirm the need to improve the accuracy of the IMERG-F data in mountainous areas.

References

Adfy, D. M., & Marzuki. (2021). Analisis Kerawanan Bencana Longsor dari Karakteristik Hujan, Pergerakan Tanah dan Kemiringan Lereng di Kabupaten Agam. Jurnal Fisika Unand (JFU), 10(1). https://doi.org/10.25077/jfu.10.1.8-14.2021

Baranowski, D. B., Flatau, M. K., Flatau, P. J., Karnawati, D., Barabasz, K., Labuz, M., Latos, B., Schmidt, J. M., Paski, J. A. I., & Marzuki. (2020). Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16171-2

Dewi, S. M., & Marzuki. (2020). Analisis Pengaruh Pergeseran Lokasi ENSO terhadap Curah Hujan di Indonesia. Jurnal Fisika Unand (JFU), 9(2). https://doi.org/10.25077/jfu.9.2.176-182.2020

ETCCDI Climate Change Indices. (n.d.). Retrieved from: http://etccdi.pacificclimate.org/list_27_indices.shtml

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2009.08.003

Hosseini-Moghari, S. M., & Tang, Q. (2020). Validation of gpm imerg v05 and v06 precipitation products over iran. Journal of Hydrometeorology. https://doi.org/10.1175/JHM-D-19-0269.1

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95(5). https://doi.org/10.1175/BAMS-D-13-00164.1

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E. J., Sorooshian, S., Tan, J., & Xie, P. (2019). NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version 06. National Aeronautics and Space Administration (NASA), March.

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E. J., & Xie, P. (2015). NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version 4.5, November.

Jiang, L., & Bauer-Gottwein, P. (2019). How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.03.042

Liu, C. Y., Aryastana, P., Liu, G. R., & Huang, W. R. (2020). Assessment of satellite precipitation product estimates over Bali Island. Atmospheric Research, 244. https://doi.org/10.1016/j.atmosres.2020.105032

Ma, Q., Xiong, L., Xia, J., Xiong, B., Yang, H., & Xu, C. Y. (2019). A censored shifted mixture distribution mapping method to correct the bias of daily IMERG satellite precipitation estimates. Remote Sensing, 11(11). https://doi.org/10.3390/rs11111345

Manz, B., Páez-Bimos, S., Horna, N., Buytaert, W., Ochoa-Tocachi, B., Lavado-Casimiro, W., & Willems, B. (2017). Comparative ground validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes. Journal of Hydrometeorology. https://doi.org/10.1175/JHM-D-16-0277.1

Marzuki, M., Harysandi, D. K., Oktaviani, R., Meylani, L., Vonnisa, M., Harmadi, Hashiguchi, H., Shimomai, T., Luini, L., Nugroho, S., Muzirwan, & Aris, N. A. M. (2020). International Telecommunication Union-Radiocommunication Sector P.837-6 and P.837-7 performance to estimate Indonesian rainfall. Telkomnika (Telecommunication Computing Electronics and Control), 18(5). https://doi.org/10.12928/TELKOMNIKA.V18I5.14316

Marzuki, M., Hashiguchi, H., Shimomai, T., & Randeu, W. L. (2016). Cumulative distributions of rainfall rate over Sumatra. Progress In Electromagnetics Research M, 49. https://doi.org/10.2528/PIERM16043007

Marzuki, M., Hiroyuki, H., Toshiaki, K., Toyoshi, S., Yoshiaki, S., & Yukihiro, T. (2016). Precipitation microstructure in different Madden-Julian Oscillation phases over Sumatra. Atmospheric Research, 168. https://doi.org/10.1016/j.atmosres.2015.08.022

Marzuki, M., Kozu, T., Shimomai, T., Randeu, W. L., Hashiguchi, H., & Shibagaki, Y. (2009). Diurnal variation of rain attenuation obtained from measurement of raindrop size distribution in equatorial Indonesia. IEEE Transactions on Antennas and Propagation, 57(4 PART 2). https://doi.org/10.1109/TAP.2009.2015812

Marzuki, M., Randeu, W. L., Kozu, T., Shimomai, T., Hashiguchi, H., & Schönhuber, M. (2013). Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-Video Disdrometer measurement. Atmospheric Research, 119, 23–37. https://doi.org/10.1016/j.atmosres.2011.08.006

Marzuki, M., Suryanti, K., Yusnaini, H., Tangang, F., Muharsyah, R., Vonnisa, M., & Devianto, D. (2021). Diurnal variation of precipitation from the perspectives of precipitation amount, intensity and duration over Sumatra from rain gauge observations. International Journal of Climatology, 41(8). https://doi.org/10.1002/joc.7078

Marzuki, M., Yusnaini, H., Ramadhan, R., Tangang, F., Amirudin, A. A. Bin, Hashiguchi, H., Shimomai, T., & Vonnisa, M. (2022). Characteristics of Precipitation Diurnal Cycle over a Mountainous Area of Sumatra Island including MJO and Seasonal Signatures Based on the 15-Year Optical Rain Gauge Data, WRF Model and IMERG. Atmosphere, 13(1), 63. https://doi.org/10.3390/atmos13010063

Mulyana, E., Prayoga, M. B. R., Yananto, A., Wirahma, S., Aldrian, E., Harsoyo, B., Seto, T. H., & Sunarya, Y. (2018). Tropical cyclones characteristic in southern Indonesia and the impact on extreme rainfall event. MATEC Web of Conferences, 229. https://doi.org/10.1051/matecconf/201822902007

OSI. (n.d.). Optical Rain Gauge. Retrieved November 20, 2021, from https://catalog.opticalscientific.com/item/weather-sensors/org-optical-rain-gauge/org-815-ds

Schumacher, R. S., & Johnson, R. H. (2006). Characteristics of U.S. extreme rain events during 1999-2003. Weather and Forecasting, 21(1). https://doi.org/10.1175/WAF900.1

Sharifi, E., Steinacker, R., & Saghafian, B. (2018). Multi time-scale evaluation of high-resolution satellite-based precipitation products over northeast of Austria. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2018.02.020

Sungmin, O., Foelsche, U., Kirchengast, G., Fuchsberger, J., Tan, J., & Petersen, W. A. (2017). Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrology and Earth System Sciences, 21(12). https://doi.org/10.5194/hess-21-6559-2017

Supari, Tangang, F., Juneng, L., & Aldrian, E. (2017). Observed changes in extreme temperature and precipitation over Indonesia. International Journal of Climatology. https://doi.org/10.1002/joc.4829

Supari, Tangang, F., Salimun, E., Aldrian, E., Sopaheluwakan, A., & Juneng, L. (2018). ENSO modulation of seasonal rainfall and extremes in Indonesia. Climate Dynamics, 51(7–8). https://doi.org/10.1007/s00382-017-4028-8

Tan, J., Petersen, W. A., & Tokay, A. (2016). A novel approach to identify sources of errors in IMERG for GPM ground validation. Journal of Hydrometeorology, 17(9). https://doi.org/10.1175/JHM-D-16-0079.1

Tan, M. L., & Duan, Z. (2017). Assessment of GPM and TRMM precipitation products over Singapore. Remote Sensing, 9(7). https://doi.org/10.3390/rs9070720

Tang, G., Clark, M. P., Papalexiou, S. M., Ma, Z., & Hong, Y. (2020). Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2020.111697

Tangang, F., Supari, S., Chung, J. X., Cruz, F., Salimun, E., Ngai, S. T., Juneng, L., Santisirisomboon, J., Santisirisomboon, J., Ngo-Duc, T., Phan-Van, T., Narisma, G., Singhruck, P., Gunawan, D., Aldrian, E., Sopaheluwakan, A., Nikulin, G., Yang, H., Remedio, A. R. C., … Hein-Griggs, D. (2018). Future changes in annual precipitation extremes over Southeast Asia under global warming of 2°C. APN Science Bulletin. https://doi.org/10.30852/sb.2018.436 ‘

Ulfah, S., Marzuki, M., & Susilo, A. (2021). Analysis Vulnerability Disaster of Landslide in Lantan Village Using Geoelectric Data and Sentinel Image. Jurnal Penelitian Pendidikan IPA, 7(4), 794–801. https://doi.org/10.29303/jppipa.v7i4.915

Utami, I., & Marzuki, M. (2020). Analisis sistem informasi banjir berbasis media twitter. Jurnal Fisika Unand, 9(1). https://doi.org/10.25077/jfu.9.1.67-72.2020

Vitri, T., & Marzuki. (2014). Analisis Pengaruh El Nino Southern Oscilation (ENSO) Terhadap Curah Hujan di Koto Tabang Sumatera Barat. Jurnal Fisika Unand, 3(4). https://doi.org/10.25077/jfu.3.4.214-221.2014

Wahyuni, S., Pujiastuti, D., Sani, L. F., & Rahayu, A. (2015). Tinjauan Keadaan Meteorologi Pada Banjir Bandang Kota Padang Tanggal 24 Juli 2012. Jurnal Fisika Unand, 4(4). https://doi.org/10.25077/jfu.4.4.%25p.2015

Wong, J. S., Razavi, S., Bonsal, B. R., Wheater, H. S., & Asong, Z. E. (2017). Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada. Hydrology and Earth System Sciences, 21(4). https://doi.org/10.5194/hess-21-2163-2017

Yang, M., Liu, G., Chen, T., Chen, Y., & Xia, C. (2020). Evaluation of GPM IMERG precipitation products with the point rain gauge records over Sichuan, China. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2020.105101

Yusnaini, H., Ramadhan, R., Marzuki, M., Ningsih, A. P., Hashiguchi, H., Shimomai, T., Vonnisa, M., Harmadi, H., Suryanto, W., & Sholihun, S. (2022). Statistical Comparison of IMERG Precipitation Products with Optical Rain Gauge Observations over Kototabang, Indonesia. Jurnal Ilmu Fisika| Universitas Andalas, 14(1), 10–20. https://doi.org/10.25077/jif.14.1.10-20.2022

Zhang, Q., Xu, C. Y., Zhang, Z., Chen, Y. D., Liu, C. ling, & Lin, H. (2008). Spatial and temporal variability of precipitation maxima during 1960-2005 in the Yangtze River basin and possible association with large-scale circulation. Journal of Hydrology, 353(3–4). https://doi.org/10.1016/j.jhydrol.2007.11.023

Author Biographies

Ravidho Ramadhan, Universitas Andalas Padang

Marzuki Marzuki, Department of Physics, Universitas Andalas

Helmi Yusnaini, Universitas Andalas Padang

Ayu Putri Ningsih, Universitas Andalas, Padang

Hiroyuki Hashiguchi, Kyoto University, Japan

Toyoshi Shimomai, Shimane University, Shimane, Japan

Mutya Vonnisa, Universitas Andalas

Syarifatul Ulfah, Universitas Andalas

Wiwit Suryanto, Universitas Gadjah Mada

Sholihun Sholihun, Universitas Gadjah Mada

License

Copyright (c) 2022 Ravidho Ramadhan, Marzuki Marzuki, Helmi Yusnaini, Ayu Putri Ningsih, Hiroyuki Hashiguchi, Toyoshi Shimomai, Mutya Vonnisa, Syarifatul Ulfah, Wiwit Suryanto, Sholihun Sholihun

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).