Vol. 8 No. 3 (2022): July
Open Access
Peer Reviewed

Distribution of the Fraunhofer Diffraction Intensity by a Rectangular Slit Using a Razor Blade

Authors

Eli Trisnowati , Putut Marwoto , Retno Sri Iswari , Edy Cahyono

DOI:

10.29303/jppipa.v8i3.1284

Published:

2022-07-31

Downloads

Abstract

This research was conducted by making a rectangular slit using a razor blade as a narrow gap in the Fraunhofer diffraction experiment. The intensity distribution measurement on the resulting diffraction pattern uses a voltage divider circuit. This circuit takes advantage of the nature of the LDR, which changes resistance when exposed to light. Experiments show that a diffraction pattern screen when a 560 nm coherent light passes through a narrow rectangular slit made of razor cut. We measured the narrow gap using a tracker application with the resulting gap size (0.3564 x 0.4677) mm. The ratio of the intensity distribution of the x-axis bright pattern on the Fraunhofer diffraction by a rectangular slit with slit size height x width = (0.4677 x 0.3564) mm from b = -5p to 5p (maximum 4, maximum 3, maximum 2, maximum 1, central maximum, maximum 1, maximum 2, maximum 3, maximum 4) is 0.000873; 0.000763; 0.005395; 0.020583; 1; 0.039658; 0.008088; 0.002554; 0.001218. The ratio of the intensity distribution of the y-axis bright pattern on the Fraunhofer diffraction by a rectangular slit with slit size height x width = (0.4677 x 0.3564) mm from g = -5p  to 5p (maximum 4, maximum 3, maximum 2, maximum 1, central maximum, maximum 1, maximum 2, maximum 3, maximum 4) is 0.001890; 0.001469; 0.002447; 0.040516; 1; 0.037141; 0.006482; 0.001690; 0.000440. This study indicates that diffraction experiments and the measurement of the diffraction pattern’s intensity can be carried out with simple materials and equipment and can be used in the correct experiment.

Keywords:

Diffraction, Fraunhofer, Rectangular slit, Razor blade, a voltage divider circuit

References

Aji, M.P., Karunawan, J., Chasanah, W.R., Nursuhud, P. I., Wiguna, P. A., & Sulhadi. (2017). A simple diffraction experiment using banana stem as a natural grating. Physics Education, 52(2), 025009. https://doi.org/10.1088/1361-6552/aa589a

Aji, M.P., Karunawan, J., Chasanah, W.R., Nursuhud, P. I., Wiguna, P. A., & Sulhadi. (2017). A simple diffraction experiment using banana stem as a natural grating. Physics Education, 52(2), 25009. https://doi.org/10.1088/1361-6552/aa589a

Aji, M.P., Prabawani, A., Rahmawati, I., Rahmawati, J. A., Priyanto, A., & Darsono, T. (2019). A diffraction grating from a plastic bag. Physics Education, 54(3), 035016. https://doi.org/10.1088/1361-6552/ab0e4e

Aviani, I., & Erjavec, B. (2011). An easy method to show the diffraction of light. Physics Education, 46(2), 134–136. https://doi.org/10.1088/0031-9120/46/2/f02

Ayop, S.K. (2017). Analyzing Impulse Using iPhone and Tracker. The Physics Teacher, 55(8), 480–481. https://doi.org/10.1119/1.5008342

Brown, D., Christian, W., & Hanson, R.M. (2011). Tracker video analysis and modeling tool for physics education. Retrieved from https://physlets.org/tracker

Bryan, J.A. (2009). Investigating the conservation of mechanical energy using video analysis: four cases. Physics Education, 45(1), 50–57. https://doi.org/10.1088/0031-9120/45/1/005

Coffey, T., Bryan, I., Bryan, Z., Wicker, D., Drake, J., Pope, N., & Leonard, D. N. (2010). An AFM learning module employing diffraction gratings. Microscopy Today, 18(6), 42-48. http://dx.doi.org/10.1017/S1551929510001112

Eadkhong, T., Rajsadorn, R., Jannual, P., & Danworaphong, S. (2012). Rotational dynamics with Tracker. European journal of physics, 33(3), 615. http://dx.doi.org/10.1088/0143-0807/33/3/615

Eisenberg, H.S., Silberberg, Y., Morandotti, R., & Aitchison, J.S. (2000). Diffraction Management. Physical Review Letters 85(9). 1863–66. https://doi.org/10.1103/PhysRevLett.85.1863

England, G., Kolle, M., Kim, P., Khan, M., Camayd-Muñoz, P., Mazur, E., & Aizenberg, J. (2014). Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna. Proceedings of the National Academy of Sciences of the United States of America, 111. https://doi.org/10.1073/pnas.1412240111

Ghatak, A. (2010). Optics. New York: McGraw-Hill Education.

Groff, J.R. (2012). Estimating the Size of Onion Epidermal Cells from Diffraction Patterns. The Physics Teacher 50(7). 420–23. https://doi.org/10.1119/1.4752048

Jetty, N.R., Suman, A., & Khaparde, R.B. (2012). Novel cases of diffraction of light from a grating: theory and experiment. American Journal of Physics, 80(11), 972-979. https://doi.org/10.1119/1.4737854

Kazanskiy, N. (2011). Research and Education Center of Diffractive Optics. Proceedings of SPIE - The International Society for Optical Engineering, 8410, 26. https://doi.org/10.1117/12.923233

Maretta, Y. (2016). Preparing prospective teachers in integrating science and local wisdom through practicing open inquiry. Journal of Turkish Science Education, 13(2), 3-14. http://dx.doi.org/10.12973/tused.10163a

Monsoriu, J., Furlan, W., Pons, A., Barreiro, J., & Enez, M. (2011). Undergraduate experiment with fractal diffraction gratings. Eur. J. Phys. European Journal Of Physics Eur. J. Phys, 32106, 687–694. https://doi.org/10.1088/0143-0807/32/3/005

Moxnes, A.R., & Osgood, J. (2018). Sticky stories from the classroom: From reflection to diffraction in Early Childhood Teacher Education. Contemporary Issues in Early Childhood, 19(3), 297–309. https://doi.org/10.1177/1463949118766662.

Paixão, P. A., Remonatto, V. M. C., Calheiro, L. B., Dos Reis, D. D., & Goncalves, A. M. B. (2021). Interference and diffraction experiment using 3D printing and Arduino. Physics Education, 57(2), 25011. https://doi.org/10.1088/1361-6552/ac3d3c

Parker, A. R., & Martini, N. (2014). Diffraction Gratings in Caligoid (Crustacea: Copepoda) Ecto-parasites of Large Fishes. Materials Today: Proceedings, 1, 138–144. https://doi.org/https://doi.org/10.1016/j.matpr.2014.09.012

Piunno, P. A. E. (2017). Teaching the Operating Principles of a Diffraction Grating Using a 3D-Printable Demonstration Kit. Journal of Chemical Education, 94(5), 615–620. https://doi.org/10.1021/acs.jchemed.6b00906

Poonyawatpornkul, J., & Wattanakasiwich, P. (2013). High-speed video analysis of damped harmonic motion. Physics Education, 48(6), 782. https://doi.org/10.1088/0031-9120/48/6/782

Pratidhina, E., Dwandaru, W. S. B., & Kuswanto, H. 2020. Exploring Fraunhofer diffraction through Tracker and spreadsheet: An alternative lab activity for distance learning. Revista Mexicana de Fisica E, 17(2), 285-290. http://dx.doi.org/10.31349/RevMexFisE.17.285

Singh, I., Khun Khun, K., & Kaur, B. (2018). Simulating Fraunhofer diffraction of waves using Microsoft excel spreadsheet. Physics Education, 53(5), 55010. https://doi.org/10.1088/1361-6552/aacd82

Sirisathitkul, C., Glawtanong, P., Eadkong, T., & Sirisathitkul, Y. (2013). Digital video analysis of falling objects in air and liquid using Tracker. Revista Brasileira de ensino de Física, 35, 1-6. http://dx.doi.org/10.1590/S1806-11172013000100020

Yanuarief, C. (2016). Simulasi Pola Difraksi Fraunhofer Untuk Celah Lingkaran Dengan Modifikasi Fungsi Bessel. Integrated Lab Journal 4(2). 181–88. https://doi.org/10.14421/ilj.2016.%25x

Yusuf, E. (2016). Using Tracker to Engage Students’ Learning and Research in Physics. Pertanika Journal Science and Technology, 24(2), 483-491

Author Biographies

Eli Trisnowati, Universitas Tidar

Putut Marwoto, Universitas Negeri Semarang

Retno Sri Iswari, Universitas Negeri Semarang

Edy Cahyono, Universitas Negeri Semarang

Downloads

Download data is not yet available.

How to Cite

Trisnowati, E., Marwoto, P. ., Iswari, R. S. ., & Cahyono, E. . (2022). Distribution of the Fraunhofer Diffraction Intensity by a Rectangular Slit Using a Razor Blade . Jurnal Penelitian Pendidikan IPA, 8(3), 1524–1531. https://doi.org/10.29303/jppipa.v8i3.1284