Observation of Rayleigh Benard Convection as A Representation of Learning of Natural Phenomenons Through Water Molecular Movement

Authors

M Hidayatur Rohman , Putut Marwoto , Retno Sri Iswari , Edy Cahyono

DOI:

10.29303/jppipa.v8i3.1323

Published:

2022-07-31

Issue:

Vol. 8 No. 3 (2022): July

Keywords:

Rayleigh Benard convection, Laminar and turbulent, Bifurcation diagrams, Whirlpools, Whirlwinds

Research Articles

Downloads

How to Cite

Rohman, M. H., Marwoto, P. ., Iswari, R. S. ., & Cahyono, E. . (2022). Observation of Rayleigh Benard Convection as A Representation of Learning of Natural Phenomenons Through Water Molecular Movement. Jurnal Penelitian Pendidikan IPA, 8(3), 1074–1082. https://doi.org/10.29303/jppipa.v8i3.1323

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Research has been carried out with a device to observe the phenomenon of Rayleigh Benard convection, made of a glass box bounded by a lower plate and an upper plate. The bottom plate is hotter than the top plate which functions to heat the horizontal fluid layer from below. This study aims to observe the phenomenon of water molecule movement. The observation medium was water mixed with teak sawdust as a representation of water particles with an average density of mean=0.99 g/cm3. The variation of water thickness (d) used 5 cm and 6 cm with variations in temperature difference (DT) with an average increase of 50°C. Data was collected with a cellphone camera and run with Windows Movie Maker software which has a time accuracy of up to 0.001 seconds. It was observed that an increase in the temperature difference (DT) between the two plates resulted in an increase in the velocity of motion of water particles in convection which is depicted by a v-DT diagram. Due to the difference in temperature (DT) also results in the movement patterns of water molecules, namely laminar and turbulent. The turbulent phase with the Rayleigh number value R~107, indicated that the flow of water particles is getting faster, the direction of the flow of the particles starts to become irregular and sometimes signs of a water vortex appear. At different fluid immersion results in the start of a turbulent phase. The turbulent phase for d=5cm is observed at DT~30°C, and d=6cm at DT~20°C. Furthermore, this RBC phenomenon is used as a representation of learning natural phenomena in air fluids, namely whirlwinds as an event due to differences in temperature and pressure of a fluid

References

Ahlers, G., Bodenschatz, E. & He, X. (2017). Ultimate state transition of turbulent Rayleigh Benard convection. Physical Review Fluids, 2(054603), 1–6. https://doi.org/10.1103/PhysRevFluids.2.054603

Ahlers, G. (2006). Experiments with Rayleigh-Benard convection. In book: dynamics of spatio- temporal cellular structures. Springer Tracts in Modern Physics, 207, 67–94. Retrieved from https://link.springer.com/book/10.1007/b106790

Aurnou, J.M. & Olson, P. L. (2001). Experiments on Rayleigh Benard convection, magnetoconvection and rotating magnetoconvection in liquid gallium. Journal of Fluid Mechanics, 430, 283–307. https://doi.org/10.1017/S0022112000002950

Ayed, S.K., Ilic, G., Zivkovic, P., Vukic, M. & Tomic, M. A. (2016). Instability of The Rayleigh-Benard Convection for Inclined Lower Wall with Temperature Variation. Mechanical Engineering, 14(2), 179–197. http://dx.doi.org/10.22190/FUME1602179A

Ayed, S.K., Zivkovic, P. & Tomic, M. A. (2017). Experimental and analytical solution for Rayleigh- Bernard convection. International Journal of Computation and Applied Sciences, 3(2), 224–232.

Ayed, S.K. & Tomic, M. A. (2017). Experiment study of Rayleigh-Bernard convection with upper heat plate effects. International Journal of Computation and Applied Sciences, 3(3), 261–270.

Balasubramanian, S. & Ecke, R. E. (2013). Experimental study of Rayleigh-Bénard convection in the presence of rotation. International Journal of Materials, Mechanics and Manufacturing, 1(2), 148–152. http://dx.doi.org/10.7763/IJMMM.2013.V1.32

Berdnikov, V. S., Vinokurov, V. A., Vinokurov, V. V, Grishkov, V. A., & Mitin, K. A. (2018). Laminar-turbulent transitions at natural convection in flat and annular vertical fluid layers. Journal of Physics: Conference Series, 1105, 12009. https://doi.org/10.1088/1742-6596/1105/1/012009

Bhattacharjee, J. K. (2015). Self-Consistent Field Theory for the Convective Turbulence in a Rayleigh-Benard System in the Inï¬nite Prandtl Number Limit. Journal Stat Physic, 2015(160), 1519–1528. https://doi.org/10.1007/s10955-015-1292-z

Chen, L., Zhao, Y. & Zhang, X. R. (2015). Poiseuille Rayleigh-Benard Convective Flow and Compressible Boundary Effects of Near-Critical Fluid in Microchannels. Journal of Nanoscienceand Nanotechnology, 15(4), 3035–3042. http://dx.doi.org/10.1166/jnn.2015.9653

Drazin, P. G. (2002). Introduction to hidrodynamic stability. Chambridge University Press.

Dyahwathi, N., Effendy, S., & Adiningsih, E. S. (2007). Karakteristik badai tropis dan dampaknya terhadap anomali hujan di Indonesia. Jurnal Agromet Indonesia, 21(2), 61–72. https://doi.org/10.29244/j.agromet.21.2.61-72

Fan, X., Wang, S. dan Xu, W. Q. (2020). Initial-Boundary Layer Associated with the 3-D Boussinesq System for Rayleigh-B´Enard Convection. Electronic Journal of Differential Equations, 2020(31), 1–20. Retrieved from https://digital.library.txstate.edu/handle/10877/14535

Gayen, B., Griffiths, R. W., & Hughes, G. O. (2014). Stability transitions and turbulence in horizontal convection. Journal of Fluid Mechanics, 751, 698–724. https://doi.org/10.1017/jfm.2014.302

Getling, A. V. (1997). Rayleigh Benard Convection; Structures and Dynamics. Word Scientific.

Green, G., Vlaykov, D.G., Mellado, J.P. and Michael, M. (2020). Resolved energy budget of superstructures in Rayleigh–Bénard convection. Journal Fluid Mech, 887(A21), 1–28.

Grigoriev, V.V. & Zakharov, P. E. (2017). Numerical Simulation of Two-Dimensional Rayleigh-Benard Convection. AIP Conference Proceedings, 1907(030031), 1–8. https://doi.org/10.1017/jfm.2019.1008

Handoko. (1995). Klimatologi Dasar, Landasan Pemahaman Fisika Atmosfer Dan Unsur Unsur Iklim. Pustaka jaya.

Hui Peng, S., Davidson, L., & Hanjali, K. (2006). Large Eddy simulation and deduced scaling analysis of Rayleigh Benard convection up to Ra=109. Journal of Turbulence, 7(66), 1–29. https://doi.org/10.1080/14685240600953462

Jiji, L. M. (2006). Heat Convection. Springer-Verlag Berlin Heidelberg.

Klein, M., Schmidt, H. & Lignell, D. O. (2018). Map-based modeling of high-Rayleigh-number turbulent convection in planar and spherical confinements. Conference on Modelling Fluid Flow (CMFF’18), The 17th International Conference on Fluid Flow Technologies. Budapest, Hungary, September 4-7, ISBN 978-9, 1–8.

Klein, M. & Schmidt, H. (2019). Investigating Rayleigh Benard convection at low Prandtl numbers using one-dimensional turbulence modeling. 11th. International Symposium on Turbulence and Shear Flow Phenomena, Southampton, UK, July 30 to August 2, 1–6.

Lyubimova, T.P., Lyubimov, D.V. & Parshakova, Y. N. (2015). Implications of the Marangoni effect on the onset of Rayleigh–Benard convection in a two-layer system with a deformable interface. European Physical Journal Special Topics, 224, 249–259. https://doi.org/10.1140/epjst/e2015-02357-3

Marselina, D.S. & Widodo, E. (2015). Analisis statistika terhadap penyebab angin kencang dan puting beliung di Daerah Istimewa Yogyakarta Tahun 2011-2014. Jurnal Dialog Penanggulangan Bencana, 6(2), 65–80.

Nataraj, S., Reddy K.S. & Thampi, S. P. (2017). Lattice Boltzmann simulations of a radiatively participating fluid in Rayleigh–Benard convection. Numerical Heat Transfer, Part A: Applications, 72(4), 313–329. https://doi.org/10.1080/10407782.2017.1376936

Palymskiy, I. (2015). On Ultimate Regime of Rayleigh-Benard Convection. Computational Thermal Sciences, 7(4), 339–344. http://dx.doi.org/10.1615/ComputThermalScien.2015013665

Pandey, A., Scheel, J.D. & Schumacher, J. (2018). Turbulent superstructures in Rayleigh-Bénard convection. Article Nature Communications, 9(2018), 1–11. https://doi.org/10.1038/s41467-018-04478-0

Ramos, I. C. dan Briozzo, C. B. (2015). Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–B´enard convection. Papers in Physics, 7, 1–9. https://doi.org/10.4279/pip.070015

Rohman, M. H. (2019). Fenomena Pusaran Air Pada Kajian Konveksi Rayleigh Benard Sebagai Representasi Pembelajaran Terjadinya Angin Puting Beliung. Jurnal IPA Dan Pembelajaran IPA (JIPI), 3(2), 62–74. https://doi.org/10.24815/jipi.v3i2.14707

Siddheshwar, P. G. and Sri Krishna, C. V. (2001). Rayleigh-Benard Convection In A Viscoelastic Fluid-Filled High-Porosity Medium With Nonuniform Basic Temperature Gradient. IJMMS, 25(9), 609–619. http://dx.doi.org/10.1155/S0161171201001028

Sudia, B. (2017). Konveksi paksa aliran Laminer isotermal di atas plat datar pada berbagai kondisi profil kecepatan. Dinamika: Jurnal Ilmiah Teknik Mesin, 9(1), 6–11. http://dx.doi.org/10.33772/djitm.v9i1.3213

Suparso, E., Rohman, M.H. dan Yusuf, Y. (2010). Kajian Konveksi Rayleigh Benard melalui Pengamatan Gerak Air sebagai Fungsi Ketebalan Air dan Perbedaan Suhu. Jurnal Fisika Indonesia, XIV(41), 18–28.

Utomo, D. H. (2016). Meteorologi Klimatologi. Magnum Pustaka Utama.

Valencia, L. Jordi Pallares, J., Cuesta, I. & Francesc Xavier Grau, F. X. (2007). Turbulent Rayleigh–Be´nard convection of water in cubical cavities: A numerical and experimental study. International Journal of Heat and Mass Transfer, 50(2007), 3203–3215. Retrieved from https://www.sciencedirect.com/science/article/pii/S0017931007000804

Welty, J.R., Wicks, C.E., Wilson, R.E., & Rorrer, G. (2001). Fundamentals of Momentum, Heat, and Mass Transfer (4thEd ed.). John Wiley & Sons Inc.

Yustin, R. & Yusuf, Y. (2013). Pengamatan Gerak Konveksi Rayleigh-Benard pada Lapisan Minyak Goreng sebagai Fungsi Ketebalan Lapisan. Prosiding Pertemuan Ilmiah XXVII HFI Jateng & DIY, ISSN: 0853, 35–39.

Zhou, Z., Liu, K., Xu, L., Zhang, G., Wang, Z., Ren, T., Gu, C. & Sun, G. (2019). Study on propagation characteristics of laser in turbulent Rayleigh–Bénard thermal convection. Journal of Engineering, 2019(20), 6902–6905

Author Biographies

M Hidayatur Rohman, Pascasarjana Universitas Negeri Semarang

Putut Marwoto, Universitas Negeri Semarang

Retno Sri Iswari, Universitas Negeri Semarang

Edy Cahyono, Universitas Negeri Semarang

License

Copyright (c) 2022 M Hidayatur Rohman, Putut Marwoto, Retno Sri Iswari, Edy Cahyono

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).