High-Performance Compensation Dispersion with Apodization Chirped Fiber Bragg Grating for Fiber Communication System

Authors

DOI:

10.29303/jppipa.v8i2.1521

Published:

2022-04-30

Issue:

Vol. 8 No. 2 (2022): April

Keywords:

ACFBG, Compesation Dispersion, Optical Transmission, Chirped, Apodization

Research Articles

Downloads

How to Cite

Irawan, D. ., Azhar, A., & Ramadhan, K. (2022). High-Performance Compensation Dispersion with Apodization Chirped Fiber Bragg Grating for Fiber Communication System. Jurnal Penelitian Pendidikan IPA, 8(2), 992–999. https://doi.org/10.29303/jppipa.v8i2.1521

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The effect of dispersion will interfere with the signal transmission. Several ways can be done in compensating the dispersion such as by utilizing dispersion compensator fiber (DCF) or chirp fiber Bragg grating (CFBG). The dispersion compensation schemes with DCF are expensive and it also causes nonlinear optical effects, meanwhile, the CFBG can reduce costs and promise better results. In this study, an Apodization Chirped Fiber Bragg Grating (ACFBG) has been developed as a dispersion compensator with Optisystem with non-return to zero (NRZ) 20 Gbps. It is found that the Gaussian Cubic-CFBG apodization with a size of 90 mm had the highest Q-factor evaluation of  20,776 dB for a 250 km dispersion compensation scheme. this result is much larger than the previous CFBG dispersion compensation scheme. This study also confirmed that the Gaussian Apodization was the best profile compared to Tanh Apodization, from the evaluation of the Q-factor, Tanh cubic-CFBG only obtained a Q-factor of 9.6 dB. Certainly, the high performance of ACFBG as a dispersion compensator is very useful to support optical communication systems

References

Aladadi, Y. T., Abas, A. F., & Alresheedi, M. T. (2016). Optimum apodization profile for chirped fiber bragg gratings based chromatic dispersion compensator. Journal of the European Optical Society, 12(1). https://doi.org/10.1186/s41476-016-0006-8

Azhar, A., Fuadi, H., Doyan, A., Susilawati, S., Ayub, S., Hudha, L. S. (2022). Innovation of simple binoculars as a teaching aid for optical practicum at school. Journal of Physics Conference Series, 2165. https://doi.org/10.1088/17426596/2165/1/012031

Basil, N., & Moutaz, M. (2021). Design and Implementation of Chirp Fiber Bragg Grating for Long Haul Transmission System using Opti-system. Informatica: Journal of Applied Machines Electrical Electronics Computer Science and Communication Systems, 2(1), 1–7.

Bhardwaj, A., & Soni, G. (2015). Performance Analysis of Optical Communication System Using Fiber Bragg Grating. 2, 24–28.

Choi, B. H., Park, H. H., & Chu, M. J. (2003). New pump wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA). IEEE Journal of Quantum Electronics, 39(10), 1272–1280. https://doi.org/10.1109/JQE.2003.817582

Dar, A. B., & Jha, R. K. (2017). Chromatic dispersion compensation techniques and characterization of fiber Bragg grating for dispersion compensation. Optical and Quantum Electronics, 49(3). https://doi.org/10.1007/s11082-017-0944-4

Hussein, T. F., Rizk, M. R. M., & Aly, M. H. (2019). A hybrid DCF/FBG scheme for dispersion compensation over a 300 km SMF. Optical and Quantum Electronics, 51(4). https://doi.org/10.1007/s11082-019-1823-y

Irawan, D., Saktioto, ., & Ali, J. (2010). Linear and triangle order of NX3 optical directional couplers: variation coupling coefficient. Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IV, 7781, 77810J. https://doi.org/10.1117/12.862573

Irawan, D., Saktioto, Ali, J., Fadhali, M., & Erwin. (2012). Estimation of coupling parameters for auto-motorized fabrication of fused fiber coupler. Microwave and Optical Technology Letters, 54(8), 1932–1935. https://doi.org/10.1002/mop.26937

Irawan, D., Saktioto, T., Iwantono, Minarni, Juandi, & Ali, J. (2015). An optimum design of fused silica directional fiber coupler. Optik, 126(6), 640–644. https://doi.org/10.1016/j.ijleo.2015.01.031

Irawan, D., Saktioto, Ali, J., & Defrianto. (2011). Breakdown voltage effect on coupling ratio fusion fiber coupling. Physics Procedia, 19. https://doi.org/10.1016/j.phpro.2011.06.195

Irawan, Dedi, Fakhrudin, Z., Mustakim, Vebrianto, R., & Saktioto. (2020). Nanostructure Fusion Region of Single Mode Fiber Coupler. Journal of Physics: Conference Series, 1655. https://doi.org/10.1088/1742-6596/1655/1/012001

Irawan, Dedi, & Saktioto. (2019). Quantum Interpretation of Light Normalization at the Coupling Region Single Mode Fiber Coupling. Journal of Physics: Conference Series, 1351, 12001. https://doi.org/10.1088/1742-6596/1351/1/012001

Irawan, Dedi, Saktioto, Ali, J., Erwin, & Defrianto. (2012). Modeling of coupling parameters of directional fiber coupler based on degree of fusion. https://doi.org/10.1109/escinano.2012.6149694

Kahlon, N. K., & Kaur, G. G. (2014). Various Dispersion Compensation Techniques for Optical System: A Survey. Open Journal of Communications and Software, 2014(1), 64–73. https://doi.org/10.15764/cs.2014.01006

Karpagarajesh, G., Blessie, A., & Krishnan, S. (2021). Performance Assessment of Dispersion Compensation Using Fiber Bragg Grating and Dispersion Compensation Fiber Techniques. Informacije MIDEM, 51(4), 215–223. https://doi.org/10.33180/InfMIDEM2021.402

Kaur, Manpreet, Sarangal, H., & Bagga, P. (2015). Dispersion Compensation with Dispersion Compensating Fibers (DCF). IJARCCE, 354–356. https://doi.org/10.17148/ijarcce.2015.4280

Khusnul, F., Nasir, M., Azhar, A. (2022). Optics visualization web-based as a physics learning media in senior high school, 6(1), 188-199. Journal of Education Science. Retrieved from https://jes.ejournal.unri.ac.id/index.php/JES/article/view/8260/6788

Meena, D., & Meena, M. L. (2020). Design and analysis of novel dispersion compensating model with chirp fiber bragg grating for long-haul transmission system. Lecture Notes in Electrical Engineering, 546, 29–36. https://doi.org/10.1007/978-981-13-6159-3_4

Meena, M. L., & Kumar Gupta, R. (2019). Design and comparative performance evaluation of chirped FBG dispersion compensation with DCF technique for DWDM optical transmission systems. Optik, 188, 212–224. https://doi.org/10.1016/j.ijleo.2019.05.056

Min, R., Korganbayev, S., Molardi, C., Broadway, C., Hu, X., Caucheteur, C., Bang, O., Antunes, P., Tosi, D., Marques, C., & Ortega, B. (2018). Largely tunable dispersion chirped polymer FBG. Optics Letters, 43(20), 5106. https://doi.org/10.1364/ol.43.005106

Mohammed, N. A., Solaiman, M., & Aly, M. H. (2014). Design and performance evaluation of a dispersion compensation unit using several chirping functions in a tanh apodized FBG and comparison with dispersion compensation fiber. Applied Optics, 53(29), H239. https://doi.org/10.1364/ao.53.00h239

Mustafa, F. M., Toba, M., & Barakat, T. M. (2019). New Simulation of Fiber Bragg Grating: Maximum Reflectivity and Narrow Bandwidth without Side Lobes. In International Journal of Applied Engineering Research (Vol. 14, Issue 11). http://www.ripublication.com

Naim, N. F., Maslizan Sudin, S. N., Sarnin, S. S., Ya’acob, N., & Supian, L. S. (2020). Design of fiber bragg grating (FBG) temperature sensor based on optical frequency domain reflectometer (OFDR). International Journal of Electrical and Computer Engineering, 10(3), 3158–3165. https://doi.org/10.11591/ijece.v10i3.pp3158-3165

Ramadhan, K., Saktioto, T. (2021). Integrasi Chirping dan Apodisasi Bahan TOPAS untuk Peningkatan Kinerja Sensor Fiber Bragg Grating. Komunikasi Fisika Indonesia, 18(2), 111-123.doi:https://doi.org/10.31258/jkfi.18.2.111-123

Ranathive, S., Vinoth Kumar, K., Rashed, A. N. Z., Tabbour, M. S. F., & Sundararajan, T. V. P. (2019). Performance Signature of Optical Fiber Communications Dispersion Compensation Techniques for the Control of Dispersion Management. Journal of Optical Communications. https://doi.org/10.1515/joc-2019-0021

Saktioto, T., Ramadhan, K., Soerbakti, Y., Irawan, D., & Okfalisa. (2021). Apodization sensor performance for TOPAS fiber Bragg grating. Telkomnika, 19(6). https://doi.org/http://dx.doi.org/10.12928/telkomnika.v19i6.21669

Saktioto, T., Ramadhan, K., Soerbakti, Y., Irawan, D., Okfalisa. (2021). Integration of Chirping and Apodization of TOPAS Materials for Improving the Performance of Fiber Bragg Grating Sensors. Journal of Physics: Conference Series, 2049, 012001. https://doi.org/10.1088/1742-6596/2049/1/012001

Sayed, A. F., Barakat, T. M., & Ali, I. A. (2017). A novel dispersion compensation model using an efficient CFBG reflectors for WDM optical networks. International Journal of Microwave and Optical Technology, 12(3), 230–238.

Sayed, A. F., Mustafa, F. M., Khalaf, A. A. M., & Aly, M. H. (2020). An enhanced WDM optical communication system using a cascaded fiber Bragg grating. Optical and Quantum Electronics, 52(3). https://doi.org/10.1007/s11082-020-02305-9

Sayed, A. F., Mustafa, F. M., Khalaf, A. A. M., & Aly, M. H. (2021). Symmetrical and post dispersion compensation in WDM optical communication systems. Optical and Quantum Electronics, 53(1). https://doi.org/10.1007/s11082-020-02663-4

Syahfira, V., Permana, N. K., Susilawati, S., Azhar, A. (2021). Penerapan model pembelajaran inkuiri terbimbing untuk penguasaan konsep IPA siswa pada materi cahaya dan optik. Indonesian Journal Education and Learning, 5(1), 16-23. http://dx.doi.org/10.31002/ijel.v5i1.4560

Tahhan, S. R., Abass, A. K., & Ali, M. H. (2018). Characteristics of chirped fiber bragg grating dispersion compensator utilizing two apodization profiles. Journal of Communications, 13(3), 108–113. https://doi.org/10.12720/jcm.13.3.108-113

Author Biographies

Dedi Irawan, Universitas Riau Pekanbaru

Azhar Azhar, Universitas Riau Pekanbaru

Khaikal Ramadhan, Universitas Riau

License

Copyright (c) 2022 Dedi Irawan, Azhar Azhar, Khaikal Ramadhan

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).