Vol. 8 No. 5 (2022): November
Open Access
Peer Reviewed

Separation of N-Methylhydroxamic Fatty Acids Based on Ketapang Seed Oil using High Performance Liquid Chromatography

Authors

DOI:

10.29303/jppipa.v8i5.1611

Published:

2022-11-30

Downloads

Abstract

N-methyl fatty hydroxamic acids (N-MFHAs) is a derivative of a hydroxamic acid (FHA), were synthesized from ketapang seed oil (Terminalia catappa L.) with N-methyl hydroxylamine enzymatically using immobilized lipase (Lipozyme TL IM). N-MFHAs that are synthesized are still in a mixed state of triglycerides of the ketapang seed oil. This research aims to determine the optimum conditions for the separation of N-MFHAs into their single components and their percentage composition using High Performance Liquid Chromatography (HPLC). The specification of the HPLC system includes using the reverse phase column SGE C-18 ODS-2 and UV detector 213 nm. The optimum conditions for the separation of N-MFHAs in the HPLC system include using the mobile phase of methanol 100% and flow rate of 0.25 mL/minutes with an injection volume of 20 µL and sample concentration of 10.000 ppm. The percentage of the N-MFHAs composition successfully separated using HPLC were linoleoyl-methyl-fatty hydroxamic acid (13.09%), oleoyl-methyl-fatty hydroxamic acid (62.46%), palmitoyl-methyl-fatty hydroxamic acid (19.51%), and stearoyl-methyl-fatty hydroxamic acid (4.93%).

Keywords:

Lipase, Ketapang oil, N-methylhydroxilamine, N-MFHAs, HPLC

References

Ahmad, R., Hailat, M., Zakaraya, Z., Meanazel, O. A., and Dayyih, W. A., 2022, Development and Validation of an HPLC Method for the Determination of Meloxicam and Pantoprazole in a Combined Formulation, Analytica, (3): 161-177. Retrieved from https://mdpi-res.com/d_attachment/analytica/analytica-03-00012/article_deploy/analytica-03-00012.pdf?version=1648780085

Calvet, E. C., Balsico, C. O., Baeza, J. J. B., and Coque, M. C. G. A., 2014, Description of the Retention and Peak Profile for Chromolith Columns in Isocratic and Gradient Elution using Mobile Phase Composition and Flow Rate as Factors, Chromatography, 1(4): 194-210. https://doi.org/10.3390/chromatography1040194

Chance, J.P., Hannah, F., Obiel, H., Eva, S. I., Armann, A., Nikolay, M., Ruby, A., Teodulo, C., Huyen, N., Brian, V., Whitney, S., Bradley, K., Corey, P.A., Daniel, E.G., and Jeremy, P.M., 2018, Development of Piperazine-Based Hydroxamic Acid Inhibitors Against Falcilysin, An Essential Malarial Protease, Bioorganic & Medicinal Chemistry Letters. 28(1): 1846-1848. DOI: 10.1016/j.bmcl.2018.04.010

Datta, S., Christena, L. R., and Rajaram, Y. R. S., 2013, Enzyme Immobilization: an Overview on Techniques and Support Materials, Biotech, (3): 1-9. DOI: 10.1007/s13205-012-0071-7

Gunawan, E. R., Suhendra, D., Wulandari, B. N., and Kurniawati, L., 2019, Enzimatic Synthesis of Palmitoylethanolamide from Ketapang Kernel Oil, Journal of Physics, 1321(2): 1-6. DOI 10.1088/1742-6596/1321/2/022034

Habash, I. W., Shdefat, R. I. A., Hailat, M. M., and Dayyih, W. A., 2020, A Stability Indicating RP-HPLC Method Development for Simultaneous Estimation of Alogliptin, Pioglitazone, and Metformin in Pharmaceutical Formulations, Acta Poloniae Pharmaceutica, 77 (4): 549-562. DOI: 10.32383/appdr/125774

Haron, M.J., Silong, S.B., Jahangirian, H., and Yusof, N.A., 2012, Benzyl and Methyl Fatty Hydroxamic Acids Based on Palm Kernel Oil as Chelating Agent for Liquid-Liquid Iron (iii) Extraction, International Journal of Molecular Science, 13 (1): 2148-2159. DOI: 10.3390/ijms13022148

Jahangirian, H., MD.,J.H., Nor A.Y., Sidik S., Anuar K., Roshanak R.M., Mazyar P., and Yadollah G., 2011, Enzymatic Synthesis of Fatty Hydroxamic Acid Derivatives Based on Palm Kernel Oil, Molecules, 16 (1): 6634-6644. DOI: 10.3390/molecules16086634

Johann, T., Keth J., Bros M., and Frey H., 2019, A General Concept for the Introduction of Hydroxamic Acids into Polymers, Chemical Science, 10(1): 7009–7022. DOI: 10.1039/c9sc02557j

Liu, Q., Wei-Kang, S., Shen-Zhen, R., Wei-wei, N., Wei-yi, L., Hui-min, C., Pei, L., Jing, Y., Xiao-su, H., Jia-jia, L., Peng, C., Pu-Zhen, Y., Zhu-Ping, X., and Hai-Liang, Z., 2018, Arylamino Containing Hydroxamic Acids as Potent Urease Inhibitors for the Treatment Ofhelicobacter Pylori Infection, Europan Journal of Medicinal Chemistry, 1(1), DOI: 10.1016/j.ejmech.2018.06.065

Majnooni, M.B., Mohammadi, B., Jalili, R., Babaei, A., and Bahrami G., 2016, Determination of Fatty Acids by High-Performance Liquid Chromatography and Flourescence Detection Using Precolumn Derivatization with 9-Fluorenylmethyl Chloroformate, Journal of Liquid Chromatography & Related Technologies, 39 (1): 877-881. DOI: 10.1080/10826076.2016.1275000

Majewski, M. W., Cho, S., Miller, P. A., Franzblau, S. G., and Miller, M. J., 2015, Syntheses and Evaluation of Subtitued Aromatic by Hydroxamates and Hydroxamic Acids that Target Mycobacterium tuberculosis, Bioorganic & Medicinal Chemistry Letters, 25(21):4933-4936. DOI: 10.1016/j.bmcl.2015.04.099

Moghaddam, R.R., Salimon, J., Haron, M. J., Jahangirian, H., Ismail, M. H. S., Hejri, L. A., Vafaei, N. and Tayefehchamani, Y., 2014, Application of Methyl Fatty Hydroxamic Acids Based on Jatropha Curcas Seed Oil and Their Metal Complexes as Anti Microbial Agents, Digest Journal of Nanomaterials and Biostructures, 9 (1): 261-271. Retrieved from https://chalcogen.ro/261_Rafiee.pdf

Murniati, Suhendra, D., Gunawan, E. R., Handayani, S. S., Kurniawati, L., and Ayuliansari, Y., 2019, Identifikasi dan Isolasi Asam Lemak Essensial Ekstrak Minyak Belut menggunakan Kromatografi Cair Kinerja Tinggi, Orbital Chemistry Journal, 1(1): 12-19. Retrieved from shorturl.at/IJPZ0

Ojha, R., Han-Li, H., Wei-Chun, H., Yi-Wen, W., Kunal, N., Mei-Jung, L., Chih-Jou, S., Ting-Yi, S., Yi-Li, C., Shiow-Lin, P., and Jing-Ping, L., 2018, 1-Aroylindoline-Hydroxamic Acids as Anticancer Agents, Inhibitors of HSP90 and HDAC. European Journal of Medicinal Chemistry. 150 (1): 667-677. https://doi.org/10.1016/j.ejmech.2018.03.006

Otuechere, C.A., Adewuyi A., and Bankole O., 2020, Green Synthesized Hydroxamic Acid Administered in High Dose Disrupts the Antioxidant Balance in the Hepatic and Splenic Tissues of Albino Rats, Clinical Phytoscience, 6(10): 1-8. https://doi.org/10.1186/s40816-020-00157-0

Schmitt, F., Gosch, L.C., Schobert, R., Dittmer, A., Biersack, B., Rothemund, M., and Volkamer, A., 2019, Oxazole-Bridged Combretastatin A-4 Derivatives with Tethered Hydroxamic Acids: Structure–Activity Relations of New Inhibitors of HDAC and/or Tubulin Function, International Journal of Molecular Science, 20 (383): 1-26. DOI: 10.3390/ijms20020383

Stranix, B. R., Wu, J. J., Milot, G., Beaulieu, F., Bouchard, J.-E., Gouveia, K., and Xiao, Y., 2016, Pyridoxine Hydroxamic Acids as Novel HIV-integrase Inhibitors, Bioorganic & Medicinal Chemistry Letters, 1(1):. 1-4. DOI: 10.1016/j.bmcl.2016.01.028

Suhendra, D., 2014, Asam-Asam Lemak Hidroksamik Pembuatannya dari Minyak-minyak Nabati dan Terapannya sebagai Chelating Agent, Kelompok Intermediasi Alih Teknologi (KIAT) Abdi Insani, Mataram. Retrieved from http://eprints.unram.ac.id/id/eprint/9468

Suhendra, D. and Gunawan, E.R., 2012, Sintesis Asam-asam Lemak Hidroksamik dari Minyak Kelapa Menggunakan Lipase sebagai Katalis, Jurnal Natur Indonesia, 14(1):160-164. http://dx.doi.org/10.31258/jnat.14.1.160-164

Suhendra, D., Gunawan E.R., Astuti, F., Kurniawati, L., 2020, Separation of Fatty Acid Ethanolamides using High Performance Liquid Chromatography, Asian Journal of Chemistry, 32(12): 2960-2964. https://doi.org/10.14233/ajchem.2020.22782

Suhendra, D., Gunawan E.R., and Hajidi, 2019, Synthesis and Characterization of N-Methyl Fatty Hydroxamic Acids from Ketapang Seed Oil Catalyzed by Lipase, Molecules, 24 (1): 3895. DOI: 10.3390/molecules24213895

Suhendra, D., Gunawan, E. R., Yuanita, E., and Nazili, M., 2018, Optimization of Lipase-Catalyzed Synthesis of Fatty Hydroxamic Acid from Terminalia Catappa L. Kernel Oil, Oriental Journal of Chemistry , 34 (5): 2370-2377. DOI: 10.13005/ojc/340518

Suhendra, D., Wan, W. M. Z., Md, J. Y., Mahiran, B. and Sidik, S., 2005, Enzymatic Synthesis of Fatty Hydroxamic Acids from Palm Oil, Journal of Oleo Science, 54(1): 33-38. Retrieved from https://www.jstage.jst.go.jp/article/jos/54/1/54_1_33/_pdf

Wahid, Rahmat A Hi, 2020, Analisis Kualitatif dan Kuantitatif Tanin Ekstrak Kulit Buah Delima Putih (Punica Granatum L.) Menggunakan Metode Kromatografi Cair Kinerja Tinggi (KCKT), Indonesian Journal of Pharmacy and Natural Product, 3(2): 11-21. http://dx.doi.org/10.35473/ijpnp.v3i2.538

Zhou, F., Yan, C., Wang, H., Sun, Q., Wang, Q., and Alshameri, A., 2015, Flotation Behavior of Four C18 Hydroxamic Acids as Collectors of Rhodochrosite, Minerals Engineering, Vol. 78, pp. 15-20. https://doi.org/10.1016/j.mineng.2015.04.006

Author Biography

Dedy Suhendra, SCOPUS ID: 12645012500, University of Mataram, Department of Chemistry, Lombok Strait, Indonesia

Downloads

Download data is not yet available.

How to Cite

Nirwana, A. R., Suhendra, D., & Gunawan, E. R. (2022). Separation of N-Methylhydroxamic Fatty Acids Based on Ketapang Seed Oil using High Performance Liquid Chromatography. Jurnal Penelitian Pendidikan IPA, 8(5), 2329–2334. https://doi.org/10.29303/jppipa.v8i5.1611