Design of PCF-SPR for Early Detection of Skin Cancer Infected Cells

Authors

DOI:

10.29303/jppipa.v8i5.2120

Published:

2022-11-30

Issue:

Vol. 8 No. 5 (2022): November

Keywords:

PCF-SPR biosensor, Skin cancer detection, Numerical Investigation, High-Performance

Research Articles

Downloads

How to Cite

Irawan, D., Ramadhan, K., & Azhar, A. (2022). Design of PCF-SPR for Early Detection of Skin Cancer Infected Cells . Jurnal Penelitian Pendidikan IPA, 8(5), 2293–2298. https://doi.org/10.29303/jppipa.v8i5.2120

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

In this work, we carried out a numerical investigation of the PCF-SPR biosensor for the early detection of infected skin cancer cells and healthy cells. The study was conducted using the COMSOL Multiphysics-based FEM method. The dielectric material used in this PCF design is fused silica, while the plasmonic material is gold. The study was conducted to test the effect of the thickness of the plasmonic layer and the size of the air hole diameter on the PCF-SPR. It was found that the larger the diameter of the air hole in the proposed sensor gives a smaller confinement loss value, while the thicker the plasmonic material used also gives a small confinement loss value. The proposed PCF-SPR has a wavelength sensitivity in detecting skin cancer-infected cells of 7000 nm/RIU. These results indicate that the proposed sensor has a good performance in detecting cells infected with skin cancer.

References

Abdullah-Al-Shafi, M., & Sen, S. (2020). Design and analysis of a chemical sensing octagonal photonic crystal fiber (O-PCF) based optical sensor with high relative sensitivity for terahertz (THz) regime. Sensing and Bio-Sensing Research, 29. https://doi.org/10.1016/j.sbsr.2020.100372

Danlard, I., Mensah, I. O., & Akowuah, E. K. (2022). Design and numerical analysis of a fractal cladding PCF-based plasmonic sensor for refractive index, temperature, and magnetic field. Optik, 258. https://doi.org/10.1016/j.ijleo.2022.168893

Dash, J. N., & Jha, R. (2016). Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR. Plasmonics, 11(6), 1505–1509. https://doi.org/10.1007/s11468-016-0203-8

Irawan, D., Azhar, A., & Ramadhan, K. (2022). High-Performance Compensation Dispersion with Apodization Chirped Fiber Bragg Grating for Fiber Communication System. Jurnal Penelitian Pendidikan IPA, 8(2), 992–999. https://doi.org/10.29303/jppipa.v8i2.1521

Irawan, D., Ramadhan, K., Saktioto, S., Fitmawati, F., Hanto, D., & Widiyatmoko, B. (2022a). Hexagonal two layers-photonics crystal fiber based on surface plasmon resonance with gold coating biosensor easy to fabricate. Indonesian Journal of Electrical Engineering and Computer Science, 28(1), 146. https://doi.org/10.11591/ijeecs.v28.i1.pp146-154

Irawan, D., Ramadhan, K., Saktioto, S., & Marwin, A. (2022). Performance comparison of Topas chirped fiber bragg grating sensor with tanh and gaussian apodization. Indonesian Journal of Electrical Engineering and Computer Science, 26(3), 1477–1485. https://doi.org/10.11591/ijeecs.v26.i3.pp1477-1485

Irawan, D., Ramadhan, K., Saktioto, T., Fitmawati, F., Hanto, D., & Widiyatmoko, B. (2022b). High-Performance of Star-Photonics Crystal Fiber Based on Surface Plasmon Resonance Sensor. Indian Journal of Pure & Applied Physics, 60(9), 727–733. https://doi.org/https://doi.org/10.56042/ijpap.v60i9.64411

Irawan D, S. T. (2014). Drug Delivery System Model using Optical Tweezer Spin Control. Journal of Biosensors & Bioelectronics, 05(03). https://doi.org/10.4172/2155-6210.1000159

Liu, Q., Ma, Z., Wu, Q., & Wang, W. (2020). The biochemical sensor based on liquid-core photonic crystal fiber filled with gold, silver and aluminum. Optics and Laser Technology, 130. https://doi.org/10.1016/j.optlastec.2020.106363

Mahfuz, M. Al, Mollah, M. A., Momota, M. R., Paul, A. K., Masud, A., Akter, S., & Hasan, M. R. (2019). Highly sensitive photonic crystal fiber plasmonic biosensor: Design and analysis. Optical Materials, 90, 315–321. https://doi.org/10.1016/j.optmat.2019.02.012

Mo, X., Lv, J., Liu, Q., Jiang, X., & Si, G. (2021). A magnetic field SPR sensor based on temperature self-reference. Sensors, 21(18). https://doi.org/10.3390/s21186130

Mollah, M. A., Yousufali, M., Ankan, I. M., Rahman, M. M., Sarker, H., & Chakrabarti, K. (2020). Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sensing and Bio-Sensing Research, 29. https://doi.org/10.1016/j.sbsr.2020.100344

Rahman, K. M. M., Alam, M. S., & Islam, M. A. (2021). Highly Sensitive Surface Plasmon Resonance Refractive Index Multi-Channel Sensor for Multi-Analyte Sensing. IEEE Sensors Journal, 21(24), 27422–27432. https://doi.org/10.1109/JSEN.2021.3126624

Rahman, M. T., Datto, S., & Sakib, M. N. (2021). Highly sensitive circular slotted gold-coated micro channel photonic crystal fiber based plasmonic biosensor. OSA Continuum, 4(6), 1808. https://doi.org/10.1364/osac.425279

Rakibul Islam, M., Iftekher, A. N. M., Rakibul Hasan, K., Nayen, M. J., & Bin Islam, S. (2020). Dual-polarized highly sensitive surface-plasmon-resonance-based chemical and biomolecular sensor. Applied Optics, 59(11), 3296. https://doi.org/10.1364/ao.383352

Ramadhan, K. (2020). Dispersi multi-layer pada inti serat optik moda tunggal. Seminar Nasional Fisika Universitas Riau V (SNFUR-5), 1–5.

Ramadhan, K., & Saktioto, T. (2021). Integrasi Chirping dan Apodisasi Bahan TOPAS untuk Peningkatan Kinerja Sensor Serat Kisi Bragg. Komunikasi Fisika Indonesia, 18(2), 111–123. https://doi.org/http://dx.doi.org/10.31258/jkfi.18.2.111-123

Ramola, A., Marwaha, A., & Singh, S. (2021). Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Applied Physics A: Materials Science and Processing, 127(9). https://doi.org/10.1007/s00339-021-04785-2

Rifat, A. A., Mahdiraji, G. A., Ahmed, R., Chow, D. M., Sua, Y. M., Shee, Y. G., & Adikan, F. R. M. (2016). Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics Journal, 8(1). https://doi.org/10.1109/JPHOT.2015.2510632

Sakib, N., Hassan, W., & Rahman, T. (2021). Performance study of a highly sensitive plasmonic sensor based on microstructure photonics using an outside detecting method. OSA Continuum, 4(10), 2615. https://doi.org/10.1364/osac.433758

Saktioto, T., Ramadhan, K., Soerbakti, Y., Irawan, D., & Okfalisa. (2021a). Apodization sensor performance for TOPAS fiber Bragg grating. Telkomnika, 19(6). https://doi.org/http://dx.doi.org/10.12928/telkomnika.v19i6.21669

Saktioto, T., Ramadhan, K., Soerbakti, Y., Irawan, D., & Okfalisa. (2021b). Integration of chirping and apodization of Topas materials for improving the performance of fiber Bragg grating sensors. Journal of Physics: Conference Series, 2049(1). https://doi.org/10.1088/1742-6596/2049/1/012001

Tsai, C. C. (2012). Water distribution in cancer and normal cells.

Wu, T., Shao, Y., Wang, Y., Cao, S., Cao, W., Zhang, F., Liao, C., He, J., Huang, Y., Hou, M., & Wang, Y. (2017). Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Optics Express, 25(17), 20313. https://doi.org/10.1364/oe.25.020313

Yan, X., Wang, Y., Cheng, T., & Li, S. (2021). Photonic crystal fiber spr liquid sensor based on elliptical detective channel. Micromachines, 12(4). https://doi.org/10.3390/mi12040408

Yaroslavsky, A. N., Patel, R., Salomatina, E., Li, C., Lin, C., Al-Arashi, M., & Neel, V. (2012). High-contrast mapping of basal cell carcinomas. Optics Letters, 37(4), 644. https://doi.org/10.1364/ol.37.000644

Yasli, A. (2021). Cancer Detection with Surface Plasmon Resonance-Based Photonic Crystal Fiber Biosensor. Plasmonics, 16(5), 1605–1612. https://doi.org/10.1007/s11468-021-01425-6

Yasli, A., & Ademgil, H. (2019). Effect of plasmonic materials on photonic crystal fiber based surface plasmon resonance sensors. Modern Physics Letters B, 33(13). https://doi.org/10.1142/S0217984919501574

Author Biographies

Dedi Irawan, Universitas Riau

Khaikal Ramadhan, Institut Teknologi Bandung

License

Copyright (c) 2022 Dedi Irawan, Khaikal Ramadhan, azhar azhar

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).