Catalytic Cracking of Crude Palm Oil Using Ni-Carbon with Ion Exchange Method

Authors

Nazarudin Nazarudin , Ira Galih Prabasari , Agus Ari Setiawansyah , Ulyarti Ulyarti

DOI:

10.29303/jppipa.v8i5.2322

Published:

2022-11-30

Issue:

Vol. 8 No. 5 (2022): November

Keywords:

Biofuel, Crude palm oil, Cracking

Research Articles

Downloads

How to Cite

Nazarudin, N., Prabasari, I. G. ., Setiawansyah, A. A. ., & Ulyarti, U. (2022). Catalytic Cracking of Crude Palm Oil Using Ni-Carbon with Ion Exchange Method . Jurnal Penelitian Pendidikan IPA, 8(5), 2493–2498. https://doi.org/10.29303/jppipa.v8i5.2322

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

According to data from the National Energy Council (DEN) (2016), the energy consumption in Indonesia is increasing every year and will increase 1.8 times in 2025, this requires an alternative energy to back up the energy needs. One such alternative energy strategy is to use biodiesel. Biodiesel can be obtained from Crude Palm Oil using a catalytic cracking process. This study investigated the cracking of Crude Palm Oil using Ni-carbon with ion exchange method. The concentration of the metal solution used was 1, 2 and 3%, with temperature 450, 500 and 550 ° C. The catalyst was analyzed by XRD and showed that the highest pattern at 25.6º on 2% solution. The catalyst characterized by SEM-EDX showed that the nickel metal bonded to the 1, 2, and 3% Ni-Charcoal catalysts was 02.01, 1.13 and 2.09%, respectively and the average of catalytic cracking product conversion at concentrations of 1, 2and 3% was 62.55, 66.52 and 56.50%, respectively.

References

BPS. (2021). Republik Indonesia. Retrieved from https://www.bps.go.id/publication/2020/11/30/36cba77a73179202def4ba14/statistik-kelapa-sawit-indonesia-2019.html

Du, Y., & Chen, R. (2007). Effect of nickel particle size on alumina supported nickel catalysts for p-nitrophenol hydrogenation. Chem. Biochem. Eng, 21(3), 251–255. Retrieved from https://hrcak.srce.hr/en/16386

Endarko, E., & Adawiyah, S. R. (2019). Experimental Study of TiO2 Nanoparticles Fabrication by Sol-gel and Co-precipitation Methods for TiO2/SnO2 Composite Thin Film as Photoanode. Jurnal ILMU DASAR, 20(1), 61. https://doi.org/10.19184/jid.v20i1.9154

Harjito. (2012). Optimasi Temperatur Hidrodesulfurisasi Tiofen Terkatalisis Ni-Mo/Zeolit Alam. Jurnal MIPA, 35(0215), 151–156. Retrieved from https://media.neliti.com/media/publications/114618-ID-none.pdf

J. V. G. M. Canakci. (2001). Biodiesel Production from Oils and Fats with High Free Fatty Acids. American Society of Agricultural Engineers, 44(6), 1429–1436. Retrieved from https://biodieseleducation.org/Literature/Journal/2001_Canakci_Biodiesel_production.pdf

Kolasinski. (2022). Surface Science. John Wiley & Sons, New York.

Lestari, D. Y. (2012). PEMILIHAN KATALIS YANG IDEAL. Prosiding Seminar Nasional Penelitian, Pendidikan Dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 1–6. Retrieved from http://staffnew.uny.ac.id/upload/132309685/penelitian/Pemilihan+Katalis+Ideal.pdf

Li, L., Quan, K., Xu, J., Liu, F., Liu, S., Yu, S., Xie, C., Zhang, B., & Ge, X. (2014). Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst. Fuel, 123, 189–193. https://doi.org/10.1016/j.fuel.2014.01.049

Lin, R., Zhu, Y., & Tavlarides, L. L. (2013). Mechanism and kinetics of thermal decomposition of biodiesel fuel. Fuel, 106, 593–604. https://doi.org/10.1016/j.fuel.2012.12.013

Luo, Y., Ahmed, I., Kubátová, A., Šťávová, J., Aulich, T., Sadrameli, S. M., & Seames, W. S. (2010). The thermal cracking of soybean/canola oils and their methyl esters. Fuel Processing Technology, 91(6), 613–617. https://doi.org/10.1016/j.fuproc.2010.01.007

Mahmudah, F., & Hari Kusumawati, D. (2020). Pengaruh Penambahan Katalis Nikel Terhadap Homogenitas Fasa Dan Konduktivitas Listrik Karbon Dari Serabut Kelapa. Inovasi Fisika Indonesia, 9(2), 119–124. https://doi.org/10.26740/ifi.v9n2.p119-124

Nazarudin, N., Ulyarti, U., Alfernando, O., Galih, I., Susilawati, S., & Doyan, A. (2018). The Effect Of Temperature On The Performance Of Activated Carbon Over Catalytic Cracking Of Crude Palm Oil. Jurnal Penelitian Pendidikan IPA, 5(1). https://doi.org/10.29303/jppipa.v5i1.175.

Nazarudin, L. Muis, W. Trisunaryanti, and Triyono. (2007a). Optimasi dengan Response Surface Methodology pada Kondisi Reaksi Perengkahan Crude Palm Oil (CPO) Menggunakan Katalis CrCarbon. Sain MIPA, 13(2), 127–133. Retrieved from https://jurnal.fmipa.unila.ac.id/sains/article/view/313/0

Nazarudin, L. Muis, W. Trisunaryanti, and Triyono. (2007b). Optimizationn by Response Surface Methodology On Condition of Crude Palm Oil (CPO) Catalytic Cracking Using Cr-Carbon Catalyst. Sains MIPA, 5(1). Retrieved from https://jurnal.fmipa.unila.ac.id/sains/article/view/313/pdf

Nazarudin. (2000). Catalytic Cracking of Plastic Waste Using Nanoporous materials. Retrieved from https://discovery.ucl.ac.uk/id/eprint/1380400/

Nazarudin, Bakar, A., Marlinda, L., Asrial, A., Gusriadi, D., Yani, Z., Panda, E., Kanto, R., and Ulyarti, U. (2017). Studi Sintesis Katalis Cr/SiO2 Dari Limbah Arang Pabrik Kelapa Sawit Serta Uji Aktivitasnya Pada Proses Perengkahan Katalitik Crude Palm Oil (CPO). Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 1(2), 193–199. https://doi.org/10.22437/jiituj.v1i2.4282

Nurhayati, N. D., & Wigiani, A. (2014). Sintetis Katalis Ni-Cr/Zeolit dengan Metode Impregnasi Terpisah. Seminar Nasional Kimia Dan Pendidikan Kimia, 479–484.

Pertamina. (2020). Industrial Fuel Specification. Retrieved from Https://Www.Pertamina.Com/Industrialfuel/Id/Products-Services/Fuel-Product/,.

Pickworth, J., & Trueblood, K. E. (2010). Crystal Stucture Analysis (Third). Oxford University Press. Retrieved from https://global.oup.com/ushe/product/crystal-structure-analysis-9780199576357?cc=us&lang=en&

Pilban-jahromi, S., Ming, H. N., & Muhamad, M. R. (2013). Green gelatine-assisted sol – gel synthesis of ultrasmall nickel oxide nanoparticles. August 2018. https://doi.org/10.1016/j.ceramint.2012.10.237

Prabasari, I. G., Sarip, R., Rahmayani, S., & Nazarudin. (2019). Catalytic Cracking of Used Cooking Oil Using Cobalt-impregnated Carbon Catalysts. Makara Journal of Science, 23(3). https://doi.org/10.7454/mss.v23i3.11264

Ramadhani, D. G., Fatimah, N. F., Sarjono, A. W., Setyoko, H., & Nuhayati, D. (2017). Sintesis Ni / Zeolit Alam Teraktivasi Asam Sebagai Katalis Pada Biodiesel Minyak Biji Ketapang. Jurnal Kimia Dan Pendidikan Kimia, 2(1), 72–79. Retrieved from https://jurnal.uns.ac.id/jkpk/article/download/8530/9870

Riyanto, R. F., Daniel, & Sitorus, S. (2017). Pemanfaatan Karbon Aktif Dari Arang Tempurung Kelapa Sebagai Katalis pada Sintesis n-Butil Ester dari Minyak Jelantah. Prosiding Seminar Nasional Kimia 2017, 159–163. Retrieved from http://jurnal.kimia.fmipa.unmul.ac.id/index.php/prosiding/article/download/566/363/

Roesyadi, A., Hariprajitno, D., Nurjannah, N., & Savitri, S. D. (2013). HZSM-5 catalyst for cracking palm oil to gasoline: A comparative study with and without impregnation. Bulletin of Chemical Reaction Engineering and Catalysis, 7(3), 185–190. DOI: https://doi.org/10.9767/bcrec.7.3.4045.185-190

S.M.E Sabagh, S. T. K. and A. R. T. (2011). Energy Source, Part A: Recovery, Utilization, and Environmental Effects. American Society of Agricultural Engineers, 33(5), 401–409.

Sari, D. K., Sundaryono, A., & Handayani, D. (2017). Uji Biofuel Hasil Perengkahan Metil Ester Dari Limbah Cair Pabrik Minyak Kelapa Sawit Dengan Katalis MoNi/HZ. Jurnal Pendidikan Dan Ilmu Kimia, 1(2), 127–131.

Selim, M., & Fathy, N. (2012). Factors Affecting the Catalytic Hydrogenation of p-Nitrophenol by Nano Nickel Supported on Egyptian Kaolin. April. DOI: 10.21608/ejchem.2012.1179

Selim M.M., Abd El Maksod, I. H., & T.S, S. (2009). The use of nano supported nickel catalyst in reduction of p-nitrophenol using hydrazine hydrate as hydrogen donor. Egypt. J. Chem, 54(4), 491–506.

Sirajudin, N., Jusoff, K., Yani, S., Ifa, L., & Roesyadi, A. (2013). Biofuel production from catalytic cracking of palm oil. World Applied Sciences Journal, 26(26), 67–71. https://doi.org/10.5829/idosi.wasj.2013.26.nrrdsi.26012

Yigezu, Z. D., & Muthukumar, K. (2014). Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Conversion and Management, 84, 326–333. https://doi.org/10.1016/j.enconman.2014.03.084

Zhang, S., Yin, H., Wang, J., Zhu, S., & Xiong, Y. (2021). Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts. Energy, 216, 119285. https://doi.org/10.1016/j.energy.2020.119285

Author Biographies

Nazarudin Nazarudin, SCOPUS ID: 57193922612, Universitas Jambi, Chemistry Education Program

Ira Galih Prabasari, University of Jambi

Agus Ari Setiawansyah, Universitas Jambi

Ulyarti Ulyarti, Universitas Jambi

License

Copyright (c) 2022 Dr. Nazarudin

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).